
大数据、云计算时代数据保护不容忽视
个人数据从GB到TB,个人数字设备产生的数据量远远超过10年前;文件(非结构化数据)本身的大小发生变化,从600MB的RMVB到了30GB的蓝光1080P视频;企业数据量增加,造成的数据库庞大……这些都意味着大数据时代已然来临。
大数据时代,数据的重要性不言而喻。数据广泛存在于企业的IT系统中,是企业发展的核心,一切的IT系统发展都有赖于数据,并服务于面向企业业务的数据管理需求。随着IT行业的发展以及企业对数据保护要求的不断进步,数据保护的智能化趋势已经锐不可当,智能的数据保护正在成为所有企业所追求的共同发展目标。
大数据技术的特色在于对海量数据的挖掘,单台的计算机无法进行这样的处理,它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。云计算自然而然成为了大数据的处理平台,云计算给用户体验带来的革命:更加智能的服务、服务器永远不塞车、节省90%的成本、信息随手可得、跨地域、高可靠、按需使用、所见即所得、快速部署……这也正是数据保护的智能化趋势。未来十年中国和全球都将进入以云计算为中心的智能化时代,大数据和云计算技术的运用是未来数据保护的主要手段。
云环境的数据保护问题仍不容忽视
随着云落地,浪擎发现,更多用户把目光集中于云应用、云计算、云存储等地方,却忽略了云环境下的数据保护,甚至有人说既然分布式系统采用了多副本保存,要数据备份做什么用?
虽然我们已经步入了云计算时代,但很多公司的数据安全的意识依然非常单薄,数据安全保护工作也基本是真空的状态。几乎每隔一段时间,我们就会看到数据泄露、黑客入侵、或是亚马逊、微软、阿里云、携程等这类云服务或电子商务等关键领域内的巨头因为各种意外故障而导致长时间的服务崩溃,在每分每秒都是重金的今天,服务的中断带来的损失都是十分惨痛的。
云平台的数据丢失事故层出不穷,一次次的教训告诉我们数据安全不容忽视。云服务加速发展的前提依赖于数据,如果数据不安全,那么云计算就成了飘渺的云。近几年由于云计算、物联网的高速发展,庞大的数据量对传统备份提出很多的挑战,云时代的数据安全面临着前所未有的挑战。较好的数据保护策略就是,“把鸡蛋放在不同的篮子里”,在做好云备份的同时,仍然不能忘记还应在数据备份上再投入一些精力,做好本地和异地的容灾备份。
新形势下数据保护面临的挑战
海量数据增长:传统业务和基于云平台业务的多样化带来了结构化与非结构化数据的海量增长,由于大数据时代对海量数据的挖掘往往能得到巨大的商业价值,不能像以前一样一删了之。面对爆炸式增长的大数据,传统的数据冷备技术难以胜任新的快速、实时数据备份与恢复的需求。
RTO:数据恢复的颗粒度,如何实现任意版本、任意时间点数据的恢复,最大限度减少数据的丢失量,保护好客户的数据财产,是数据保护非常重要的要件。
RPO:数据恢复的时效性,传统数据保护手段最大的问题是恢复时间长,相对大一些的数据恢复一次需要几天的时间,而在云平台之上,越来越多的频繁在线交互业务已经不允许出现问题后要几天时间才能恢复正常。另外,传统数据保护采用的多为夜间闲置时间做数据备份,一旦出现问题,则恢复的将是前一天的数据,当天业务产生的数据可能面临全部丢失,这对于在线交互业务也是不可忍受的,他们需要的恢复时效性是分钟级甚至秒级。
虚拟化环境的数据安全:云平台的PaaS基础架构层主要依靠全面的虚拟化技术将物理硬件进行逻辑池化。随着云计算的发展虚机将在机房广泛应用,管理员需要繁琐的方式和花费大量时间定位追踪虚拟机位置,并通过手动进行备份恢复策略,如果虚拟机数量继续增长,这种繁琐的人工行为不仅影响工作效率,更会成为数据中心的一个安全隐患。如何简化备份恢复策略,让管理员从虚机维护中解放出来,也是云计算对数据保护需要解决问题之一。
浪擎提供了完善的数据备份与容灾解决方案
作为中国容灾备份领域的资深厂商,浪擎以创新、稳定、高效的自主创新技术与高性能数据容灾备份产品,服务于云计算、大数据相关应用平台的建设。浪擎海量数据实时备份系统解决客户对海量数据快速备份与恢复的诉求;浪擎双活容灾镜像系统保障业务连续运行,实现RTO、RPO趋于零的容灾;浪擎云平台灾备系统既实现对虚拟化计算的备份保护,又实现对云平台的备份保护,还助力企业云计算架构的数据备份平台的构建。提升了各级用户在数据灾备、云计算基础架构、大数据应用等各领域的整体稳定性和安全性,保障了用户信息化建设的安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08