
大数据、云计算时代数据保护不容忽视
个人数据从GB到TB,个人数字设备产生的数据量远远超过10年前;文件(非结构化数据)本身的大小发生变化,从600MB的RMVB到了30GB的蓝光1080P视频;企业数据量增加,造成的数据库庞大……这些都意味着大数据时代已然来临。
大数据时代,数据的重要性不言而喻。数据广泛存在于企业的IT系统中,是企业发展的核心,一切的IT系统发展都有赖于数据,并服务于面向企业业务的数据管理需求。随着IT行业的发展以及企业对数据保护要求的不断进步,数据保护的智能化趋势已经锐不可当,智能的数据保护正在成为所有企业所追求的共同发展目标。
大数据技术的特色在于对海量数据的挖掘,单台的计算机无法进行这样的处理,它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。云计算自然而然成为了大数据的处理平台,云计算给用户体验带来的革命:更加智能的服务、服务器永远不塞车、节省90%的成本、信息随手可得、跨地域、高可靠、按需使用、所见即所得、快速部署……这也正是数据保护的智能化趋势。未来十年中国和全球都将进入以云计算为中心的智能化时代,大数据和云计算技术的运用是未来数据保护的主要手段。
云环境的数据保护问题仍不容忽视
随着云落地,浪擎发现,更多用户把目光集中于云应用、云计算、云存储等地方,却忽略了云环境下的数据保护,甚至有人说既然分布式系统采用了多副本保存,要数据备份做什么用?
虽然我们已经步入了云计算时代,但很多公司的数据安全的意识依然非常单薄,数据安全保护工作也基本是真空的状态。几乎每隔一段时间,我们就会看到数据泄露、黑客入侵、或是亚马逊、微软、阿里云、携程等这类云服务或电子商务等关键领域内的巨头因为各种意外故障而导致长时间的服务崩溃,在每分每秒都是重金的今天,服务的中断带来的损失都是十分惨痛的。
云平台的数据丢失事故层出不穷,一次次的教训告诉我们数据安全不容忽视。云服务加速发展的前提依赖于数据,如果数据不安全,那么云计算就成了飘渺的云。近几年由于云计算、物联网的高速发展,庞大的数据量对传统备份提出很多的挑战,云时代的数据安全面临着前所未有的挑战。较好的数据保护策略就是,“把鸡蛋放在不同的篮子里”,在做好云备份的同时,仍然不能忘记还应在数据备份上再投入一些精力,做好本地和异地的容灾备份。
新形势下数据保护面临的挑战
海量数据增长:传统业务和基于云平台业务的多样化带来了结构化与非结构化数据的海量增长,由于大数据时代对海量数据的挖掘往往能得到巨大的商业价值,不能像以前一样一删了之。面对爆炸式增长的大数据,传统的数据冷备技术难以胜任新的快速、实时数据备份与恢复的需求。
RTO:数据恢复的颗粒度,如何实现任意版本、任意时间点数据的恢复,最大限度减少数据的丢失量,保护好客户的数据财产,是数据保护非常重要的要件。
RPO:数据恢复的时效性,传统数据保护手段最大的问题是恢复时间长,相对大一些的数据恢复一次需要几天的时间,而在云平台之上,越来越多的频繁在线交互业务已经不允许出现问题后要几天时间才能恢复正常。另外,传统数据保护采用的多为夜间闲置时间做数据备份,一旦出现问题,则恢复的将是前一天的数据,当天业务产生的数据可能面临全部丢失,这对于在线交互业务也是不可忍受的,他们需要的恢复时效性是分钟级甚至秒级。
虚拟化环境的数据安全:云平台的PaaS基础架构层主要依靠全面的虚拟化技术将物理硬件进行逻辑池化。随着云计算的发展虚机将在机房广泛应用,管理员需要繁琐的方式和花费大量时间定位追踪虚拟机位置,并通过手动进行备份恢复策略,如果虚拟机数量继续增长,这种繁琐的人工行为不仅影响工作效率,更会成为数据中心的一个安全隐患。如何简化备份恢复策略,让管理员从虚机维护中解放出来,也是云计算对数据保护需要解决问题之一。
浪擎提供了完善的数据备份与容灾解决方案
作为中国容灾备份领域的资深厂商,浪擎以创新、稳定、高效的自主创新技术与高性能数据容灾备份产品,服务于云计算、大数据相关应用平台的建设。浪擎海量数据实时备份系统解决客户对海量数据快速备份与恢复的诉求;浪擎双活容灾镜像系统保障业务连续运行,实现RTO、RPO趋于零的容灾;浪擎云平台灾备系统既实现对虚拟化计算的备份保护,又实现对云平台的备份保护,还助力企业云计算架构的数据备份平台的构建。提升了各级用户在数据灾备、云计算基础架构、大数据应用等各领域的整体稳定性和安全性,保障了用户信息化建设的安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25