
大数据金融风控助力小微企业
近年来,伴随互联网金融的蓬勃发展,如何依托大数据技术优势对轻资产、高成长的小微企业进行风险评估和贷款服务,成为供应链金融服务的关键一环。积极探索大数据在互联网信用风险方面的应用,对于解决小微企业融资难有哪些突出的优势?开展企业信用评级的大数据获取来源又有哪些?如何来平衡数据采集和企业隐私二者的关系?针对大数据金融风控领域的一些热点话题,记者采访了数联铭品科技有限公司董事长兼CEO曾途。
记者:大数据金融风控平台对于解决小微企业融资难的突出优势有哪些?
曾途:如何解决小微企业融资难是一个世界性难题。小微企业是经济发展的“轻骑兵”,其工业总产值占中国经济总量的60%以上,提供了75%的城镇就业机会,是中国实现经济转型的重要力量。但是,小微企业一般轻资产,财务不规范、信息不透明,传统的银行信用评估模式难以全面刻画和评估小微企业的风险,使得小微企业的融资难题长期得不到解决。而大数据的金融风控,主要从以上融资痛点着手,打造 核心优势(爱基,净值,资讯)。
其一,自动化完成小微企业的在线信用评估。大数据技术通过增加对小微企业评价的维度,开拓不同数据来源,整合“银行信贷数据”、“政府数据”及“外部公开数据”共同构成企业行为大数据,据此来还原企业真实经营的行为特点和经营状况。尤其对于轻资产的小微企业,在没有信贷记录的情况下也能通过全息风险画像进行信用水平的全面评估,有效识别信用风险,降低小微企业融资成本,扩大小微企业融资覆盖面,促进小微企业发展。
其二,实现针对小微企业的“纯线上”信贷操作。在此模式下,小微企业无需任何担保,可通过信用评分来获取信用贷款。将企业贷款的申请、审核、放款等流程逐一放在线上进行,极大降低了向传统金融机构贷款流程的周期性。通过大数据征信,小微企业可快速便捷申请到贷款,同时放贷款的银行也可通过金融风控模型来对借贷人的经营数据进行分析,实现贷后的实时监控,解决对小微企业贷后跟踪难、成本大、风险高的问题。此外,小微企业贷款的特点是“高频”、“小额”,传统方式来处理人工成本很高,大数据可以降低人工成本从而为小微企业降本增效,解决融资贵难题。
记者:利用大数据开展企业信用评级的过程中,大数据获取的来源有哪些?您如何看待平衡数据采集和企业隐私保护的关系?
曾途:在做互联网金融风险控制过程中,大数据需要打破信息的孤岛,在授权合规的前提下,整合传统的银行数据、政府数据、企业行为数据和场景数据。数据来源涵盖工商、税务、法院、征信等管理部门的数据以及包括银行自身的经营数据积累。未来风控平台的数据来源,也将在授权合规的前提下,拓宽至社保、水电等更多维度,通过大数据平台的遴选,提升企业诚信经营标准,进而达到良币驱逐劣币的结果。
大数据较传统的机构化数据而言,具有体量大、种类杂的特点,在对企业进行画像的过程中,按照不同维度需加载几千甚至上万个独立标识。数据引入多,难免会碰触企业敏感数据边缘。但需指出的是,任何组织或个人在采购或使用数据服务时,都需要一套合适的数据服务框架作为评估标准。就数联铭品而言,首先,在技术体系内,我们执行业界最严格的数据安全的标准,做到数据的分级分类,包括结构化数据和非结构化数据,公开数据和私有数据,做到隐私数据不出库,公开数据拿进来。同时还要按照整个业务流程的标准,严格执行数据“脱敏”。此外,在整个执行数据的流程当中,我们接受业界最严格的监管,从而确保信息安全。
记者:近年来科技金融是业界的热点话题,数联铭品在大数据金融风控领域还有哪些创新模式,从而为中小企业更好地服务?
曾途:金融的核心离不开风控,而数据本身是金融风险最本质的东西。时至今日,数据已经成为金融业的核心基础设施。大数据技术作为一种科学工具,提高了我们用数据去解决金融风险问题的能力。在目前的 新经济(爱基,净值,资讯)时代,新经济企业具有高成长、轻资产、重研发投入的特点,按照传统风险评估和银行传统授信模型,这类企业是没有资产信息的,这在全球范围内都是一个难题。利用企业行为大数据代替资产信息,对这类新经济企业和金融行业进行评估,可为我国的金融服务机构创造一个新风险管理的蓝海。
为了更好地服务这类企业,我们力图从信用风险、市场风险和操作风险三个层面发力,打造新的金融数据框架。比如我们已经推出集“数据+平台+应用”三位一体的大数据信用评估解决方案,对金融大数据进行了创新诠释,对企业经营行为进行风险基因(DNA)刻画和分解。此外,还创建了商业反欺诈平台的创新模式,利用大数据通过信息追踪构建特殊风险识别模型,从而辅助商业运营实体与政府监管机构甄别、预警重大金融、财务及法律风险。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22