
运用大数据让所有人成为“保民”
相比于其他行业,保险业承担的社会责任更为直接,要求也更高。如果保险业偏离了这个根本,混同于一般的投资机构,那么它的存在也就没有多大意义了。
阿里巴巴董事局主席马云日前在2016中国保险业发展年会的演讲中提出,要让保险回归保障的本质,保险的使命就是给人以安全感。马云为此发表了一句“名言”:“一个社会所有人都是股民是不正常的;一个社会所有人都是保民是健康的。”
马云的这番话看似浅显,其实触及了一个重要的命题,保险业的发展是为了什么?改革开放以来,中国的保险业获得了巨大的发展,无论是市场规模还是保险品种,都已可与发达国家争个高下。但是,就我国保险业的现状来看,也存在一些问题,老百姓)在罹患大病重病后因为医疗费用的压力而放弃治疗的事情时有发生,而接受医疗后导致家庭返贫的情况则更为普遍;一些保险公司投入的保险理财产品由于资金链断裂而导致投资者血本无归,引发区域性社会风波的事件也时有所闻。究其原因,这都是保险业在发展过程中出现了偏向,保险不再被视为为百姓提供基本保障的一个工具,而是成为人们以钱生钱的一种投资工具。
在市场经济社会里,对经济利益的追逐不仅合理,而且合法,保险公司作为一种市场主体,自然也有这方面的权利。但是,保险业不同于其他行业的一个最大特点是,它在投保人遭遇“天灾人祸”时可以及时地给予帮助,使其有能力克服困难,这也是保险业在社会上立足的根本。因此,相比于其他行业,保险业承担的社会责任更为直接,要求也更高。如果保险业偏离了这个根本,混同于一般的投资机构,那么它的存在也就没有多大意义了。马云所说的“一个社会所有人都是保民是健康的”,其意义就在这里。
一个社会上所有人都是“保民”,这就意味着,当社会上任何一个人在遭遇困难时,只要他曾经投保了相应的保险品种,就能够得到及时的帮助,这样的社会,就不会有人因看不起病而只能等死。但就目前的中国社会来说,离这样的目标显然还存在着一定的距离。在这次年会上,保监会主席项俊波一针见血地指出,部分保险公司已偏离了保险的轨道,企图把保险公司当成单一股东的融资平台,与中小股东和消费者对立。因此,保险业发展的下一步目标就是要让保险回归其作为安全保障的本质属性,为中国建立起一个人人具有安全感的社会环境。几百年来,保险业在全球范围内获得了巨大的发展,保险巨头们开发的保险品种已经上万,但保险业再发展,为社会上的每一个人、为企业、为社会提供基本保障仍然是其不可偏废、最为根本的目标。具体来说,保险公司要做的就是让每一个中国人都能够成为马云所说的“保民”,更具体地说,就是让每一个中国人在罹患大病重病后进医院的时候,不用为高昂的医疗费用担忧。
互联网技术的发展,为中国保险业的发展提供了重要的通道,也为实现让所有人成为“保民”这个目标提供了现实基础。未来几十年,云计算、大数据、人工智能会成为基本的公共服务,保险业必须看到这个前景,主动融入到这股不可逆转的大趋势之中,利用互联网的巨大功能拓展保险业的覆盖面。而未来的保险业发展中,谁能够在大数据的运用等方面领先一步,谁就能占据保险业的制高点。在这方面,蚂蚁金服在去年9月建立保险事业部后,在一年不到的时间里已经在整合阿里生态体系中的所有保险业务基础上,建立起了综合而开放的互联网保险平台。作为保险业发展重要的推进器,目前蚂蚁金服保险平台已经和78家保险机构展开深度合作,超过2000款保险产品可以触达3.3亿在互联网上的“保民”。
中国的市场经济建设正在向纵深推进,中国要在2020年全面建成小康社会。这一切都需要有一个强大的保险业“保驾护航”。保险业应该致力于让每一个中国人成为“保民”,为每一个“保民”建立起安全的屏障。保险业只有围绕这个目标展业竞争,才能抓住各种市场机遇,迎来整个行业巨大的发展空间。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15