京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从O2O概念诞生到今天表面的风生水起已经有一段时间了,关于O2O也在不断变换新的玩法。有平台战略如阿里的手机淘宝,有线下实体合作,平台推进有如京东……但众多玩法始终都在强调流量、入口、价值,大大忽略了数据的价值。铁哥认为,如果缺失了大数据分析就谈不上是真正的O2O。
对于传统企业而言,线上和线下数据分别掌握在不同部门或者不同公司手里。电商部门的数据基本都交给阿里京东等平台,电商部门基本只是掌握了用户的订单等简单信息,而这些又实在谈不上是数据。电商平台经过云计算以数据魔方以及生意经等产品反卖给店主,随着用户以及产品的品类不断增多,电商平台数据的可靠性就越来越强。电商平台也在不断打通用户的全平台数据,通过用户在不同店铺的消费习惯金额基本就可判断用户的消费能力以及消费类型(保守、冲动等)。而这些研判也为电商公司的营销提供了非常精准的数据支持。
而线下数据也基本是掌握在线下销售部门以及一些线下调查公司手里以调查问卷等形式实现。
表面上看线上数据为企业电商部门提供了非常好的营销支持,而线下又在指导商家的线下开店、线下促销等方面提供理论支持。
但如此的数据对商家的价值真有那么大吗?实则不然。
线上线下数据各自为战,数据的很多潜力无法挖掘。如线上购买如转化成线下的消费人群,就无法监控,追踪一半的用户会突然失踪,会出现数据断层。反之,线下用户突然去线上消费,而系统依然会记录为线上新用户。如此这般,当线下数据与线上数据配比时是难免要失真的。
这也难怪,往常是缺乏统一平台能够有效整合双平台数据,但O2O就完全不一样了。
O2O本质上讲就是线上与线下的2合一,打破往常线上线下的绝对界限。在O2O世界中已经不存在绝对的线上以及线下。因此,O2O要实现真正的整合数据是第一位的。
铁哥给大家描述下线上线下打通的状态,大家也可以补充:线上用户通过微信亦或是其他移动平台进入商城,通过营销鼓励以及技术等手段获取用户的年龄、性别、往常消费习惯等数据,而根据以上几个维度基本可判定该用户的消费习惯以此进行有效精准营销,在这一部分如以上电商无本质却别。但移动互联网有个非常好的功能,LBS定位,通过技术以及营销的奖励措施鼓励用户分享其地址,当地址积累足够多,基本就可描绘出企业在某具体街道的消费人群聚集区,而此数据可直接转给线下提供开设实体店的数据支持。在此,移动电商数据已经不仅仅是便于线上的营销,已经在影响线下的实体决策。
而对于线下,用户的签单以及会员信息就可以直接与线上打通,互相配比。如此可判断用户在线上线下的习惯分别如何,如对于服装品牌,线上重价格线下重体验是否可以基于数据的结果对于摆货有指导意义。而除此,数据与LBS的定位打通也可获得区域内购物的习惯,如某区域用户偏网购而在其他区域偏线下,如此可针对性进行营销。
微信有开发平台之后,众多开发公司蜂拥而上为企业开设微商城、微站服务,而以上数据必须建立在开发公司服务器上。必须但铁哥认为这种服务除了面子工程实在无多大用处。对于企业来说数据必须是自己可控的,如在对方服务器且不说数据分析是否到位专业,有否偷工减料问题,如今后更换服务商也面临数据丢失风险,这可能也是众多公司采用如此办法的原因吧。而出于数据安全角度考虑,线下数据给到线上公司又面临风险。大家都不想自己成为继携程之后的第二家公司吧。
以上说法铁哥只针对企业自有的微店,而对于阿里已经京东来说亟需是要打通线上线下数据,入驻商家多用户多,根据数据分析可互推对方消费人群产品。铁哥昨天问淘点点负责人,很可惜还没开始做。
大数据对于O2O的意义目前远没有发掘,铁哥以上也是一家之言也在不断探索。铁哥也在不断寻找在移动营销有着很好经验的案例,不限企业大小有创新就好。铁哥会在专栏分享给诸位。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28