
我理解的大数据,以高一个维度的视角毫不讲道理的直捣黄龙
很久前就想写一篇关于大数据的文章,但总是因为觉得自己功力不够所以迟迟不敢动笔。再到后来发现大数据的概念已经烂大街了,现在只要是个做产品的,收了点用户数据,就敢把自己叫大数据,似乎不这么说的产品都是非主流了。
我也不想老生常谈的讲数据到底要多大才能称得上大数据,因为这似乎只是一个相对的值。我也不想讲大数据应该搞多么牛B和复杂的算法,因为似乎一二十年前大学计算机课本里的《机器学习》就一直在讲这些东西,很久前互联网上就在用贝叶斯算法过滤垃圾邮件了,今天看起来也没有什么本质的改进。
后来我琢磨了很久,发现大家讲的大数据其实没有什么特别的,就是数据特别多,再加上点算法分析,就能叫自己大数据了。每当这种时候我就会怀疑是不是自己出了问题,因为别人都讲的挺来劲的啊?
但真要说有什么特别的,我觉得还是有的,只是不知道其他人的想法是否和我一样。我认为的大数据,是一种思想的改变,是一种不一样的观察这个世界的角度。因为数据化让我们看到了事物的整体,所以我们看问题也从局部变成全局了,这会让我们面对同样的问题时,比过去要高效很多。
举个简单的例子,围棋这个游戏,是典型的「a minute to learn,a lifetime to master」。初学者和职业棋手之间的差距,不仅在于天赋和经验。对于围棋的初学者来说,熟悉规则后,下棋的过程是跟着感觉,爱怎么走就怎么走。但是真正的职业棋手不是这么下的,他们每天都会做大量的死活题,在他们的脑海里,因为记忆了几万道死活棋型,以及很多定式和手筋,所以面对初学者时,基本上能够做到出现什么局面,都有对应的一种应对方法。
职业棋手已经可以做到部分穷举棋盘上的变化,所以面对初学者时,就像一个高维度的智慧体面对低维度的智慧体一样轻松。这种对棋盘变化的穷举和记忆,我认为就是大数据。
同样的,在电影「中国合伙人」里有这么一个片段:新梦想(新东方原型)面对美国人的起诉,美国人认为中国学生作弊了,他们不可能考出那么高的分。此时成东青(俞敏洪原型)拿起了一本书,让对方随意翻到某一页,他就能把那页的内容背诵出来 — 这是在来时的飞机上闲的蛋疼就把那本书给背了 — 美国人都看傻了。美国人可能永远都无法想中国学生在面对GRE考试时居然会采用背字典这样的笨办法。
像这种背字典、大量题海战术的方式,我认为也是大数据。这样的方式背后的付出是艰辛的,数据量和「计算量」都很大,不会背字典和题库的美国学生当然会考不过中国学生了。
所以,我认为大数据最终带给我们的,是一种全新的思考方式。一方面我们看问题的角度从局部扩展到了整体,今天的计算能力已经足够支撑我们去看到事物的全部;另一方面,我们又可以根据这种思路,去创造和收集过去被我们忽视的数据。
大数据,不仅仅是大而已。
(二)
昨天偷懒了少了一次文字排版,没想到好多朋友发消息来说字体变小了不习惯,看来坚持大一点的字体还是有好处的。
虽然很想保持高频率更新,但没想到回阿里后工作竟然比创业时还忙。经常回家得比较晚,再加上每天脑力使用过度,所以竟是硬生生的断更了两周。在接下来我想如果可能的话,把更新的时间调整到周日的晚上,周末可能会稍微空闲点。
在此也再征集一下大家想看的话题,可以向我提问,我会选取部分作为接下来文章的选题。
延伸一下昨天关于大数据的话题。在安全行业里未来真正会具备核心竞争力的,我认为正是这样的全局视角带来的改变。
比如近年来兴起的「撞库」攻击。因为各大公司用户数据的泄露,黑客手上已经拥有了数十亿条用户数据,其中20%包含了明文密码。在过去黑客想破解一个用户的密码,可能会通过字符的排列组合生成一部字典,逐个尝试,这样破解的效率无疑是相当低的。但现在因为有了全网用户的「密码库」,只需要简单的查询用户名,多半就能知道密码是什么,简单粗暴。
大数据就应该这么简单粗暴的应用,以一种完全不讲道理的方式直接达到效果,根本不需要什么精巧的算法,就像「把大象装进冰箱」里一样。
类似的,国外一家安全公司Akamai宣称他们能非常有效的阻断DDoS攻击,原因是他们通过和运营商合作的方式获取了全球30%左右的流量,从而能有效的监控到全球所有的恶意IP,发现有攻击过来,直接根据IP信息就阻断了。这也是大数据的一种典型应用。
再举一个例子,数据可能来自于过去没有注意到的地方。对于电话诈骗的传统解决思路,一般是从用户的来电号码着手,或者是从周边信息比如短信、传播来源入手。这些传统方法已经逐渐的变得效率低下。但目前有一种解决思路是根据用户的「声纹」信息进行有效识别,这样只要积累了一个用户的「声纹信息库」,就能够在每个用户通话时,直接识别出被标记为诈骗的那个用户。
所谓「声纹」就像是指纹信息一样,每个人说话的声音其实都是独一无二的,通过数字化的方法能够有效的识别出来。目前国外一些安全公司会把这种技术用在Call Center中进行反欺诈。但声纹信息和指纹信息一样,会成为国家安全基础设施的一部分。比如国外的一些机构,一旦掌握了所有中国人,包括政府领导人的指纹信息,会酿成什么后果很难想象。这也是为什么中国政府的工作人员会禁用苹果手机的原因,至少苹果收集用户的指纹信息会威胁到国家安全。
所以,我理解的大数据,和各种复杂的算法没有直接关系,那最多只是锦上添花。我理解的大数据,就是这么简单粗暴,以高一个维度的视角毫不讲道理的直捣黄龙。
两点之间什么最短?在二维空间是直线最短。但到了三维空间,两点之间距离可以为零(虫洞),比如把一张纸上的两点对折后贴起来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15