
用大数据建设危险品物流安全平台
危险品在运输与仓储过程中,往往会发生爆炸、泄漏和污染等事故。据不完全统计,仅去年一年就发生了近百起大大小小的生产安全责任事故,造成许多生命的消逝和巨额财产的损失。“百年累之,一朝毁之”,危险品的物流安全问题成为悬在头上的达摩克利斯之剑,有针对性地进行系统有效的预防、预警、应急处置与善后处理,便成为危险品物流发展中的当务之急。
按照维基的解释,危险品是指在使用或者运输、仓储过程中,会产生对环境、健康、安全及财产造成危害的物质,按照化学性质一般分为爆炸物和引爆媒介物、易燃性和毒性气体、易燃性液体、易燃性固态、氧化媒介物及有机过氧化物、毒性及感染性物质、放射性物质、腐蚀性物质和其他危险性物质等九类。
随着我国经济进入中高速增长,对高端化工产品的市场需求持续增长,危险品物流开始步入高速增长期。据统计,2015年全国危险品运输量约为10亿吨,危险品道路运输企业约为1.1万户,运输车辆约31万辆,从业人员约120万人,而每年运输量增速达10%,居全球第二位,且可能很快超过美国成为全球最大的危险品运输国家。
危险品物流的迅猛发展客观要求各管理部门以更快的速度建立起更加完善的危险品安全管理体系。
诚然,我国政府和相关管理部门已陆续建立了一系列规范危险品物流运作的法律、法规、规定和标准,一定程度上提高了危险品物流的安全系数。但近几年来,每年都会发生超过百起安全事故,发生率远高于欧美发达国家,让人们开始质疑这些法律法规和标准的科学性。这其中,既有专业水平不足的问题,也有基础设施条件差的问题,既有管理部门过多而协同管理不足的问题,也有信息化程度低导致监管能力差的问题,不一而足,但核心还是缺乏整体规划和系统建构。
危险品物流中的多头管理是其中最严重的问题之一。交通、公安、质检、安监、工商、环保、卫生、税务、海关等部门分头管理、职能交叉,形成的所谓闭环管理机制,容易存在争利时一哄而上而出现事故时则诿过推卸管理责任的可能,但目前还难以形成一个统一管理的体系,只能依靠技术工具来实现协同管理。
其中,大数据就是提高部门之间协同管理最便利的工具之一。所谓大数据,是指涉及的数据量规模巨大,无法通过传统数据库软件实现获取、存储、管理和分析的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低等特征。大数据的目的,是要把这些分布在各区域、各行业、各节点的非结构化或半结构化且含有意义的数据,依托云计算的分布式数据库和云存储进行专业化处理,实现深度数据挖掘。
危险品物流安全管理的大数据化可谓恰逢其时。在中国,2015被业界称为大数据元年,据调查显示,中国大数据市场已达到115.9亿元。2015年9月,国务院发布了《促进大数据发展行动纲要》,明确从顶层设计中解决政府数据开放共享不足、创新应用领域不广等问题;“十三五”规划也明确提出实施国家大数据战略,到2017年底形成跨部门数据资源共享共用格局。
实际上,危险品物流管理体系的主要目标是安全,其次才是效率;而危险品物流运营企业关注的主要是效益,安全则是约束的门槛。因此,利用大数据实现物流安全管理的需求在于各级管理部门,特别是很多部门还都有非常庞大的数据在手。例如,储存在交通部门的运输工具安全管理、从业人员资格等数据;储存在公安部门的危化品安全管理、剧毒化学品购买许可证、道路运输通行证、运输车辆的道路管理等数据;储存在质检部门的危化品及其包装物/容器的工业产品生产许可证以及储存在安监部门的危化品安全生产许可证、仓储危化品建设项目的安全条件审查、危化品安全使用许可证等数据。
而通过各个区域、各级政府部门建立的大数据平台,可以高度共享协同以往分散存储的安全管理信息数据,从管理源头上实时杜绝任何不符合危险品安全仓储和运输条件的企业、设施装备、从业人员以至安全管理体系,有效规避多头管理中的客户信息数据冲突,让法律法规和标准在企业管理中落地生根。
当然,单纯依靠危险品物流运营企业的自律还难以保证全系统的安全,可以利用大数据进行深度数据挖掘,从危险品的采购、生产制造、包装、分拣、储存、运输、配送等全供应链环节上实现企业级、区域级和国家级的安全风险识别、控制和规避。利用大数据建立强大的分级危险品物流安全监控中心,实时对所有危险品的生产、仓储和运输,实施严格的全流程信息管理,包括货品及货物盛装物的RFID识别标签、车载移动终端、仓储终端、作业人员识别标签等,并建立基于风险识别的预警和报警系统,这有利于危险品物流安全事故发生的应急处置和救援互助。
大数据依赖于各个分散在区域、部门和企业内部的数据库,也取决于各区域、各部门和各企业的信息化水平。不过,借国家大数据建设的东风,首先可以在已有庞大数据源的各区域、各管理部门构建大数据平台;其次可以利用危险品物流企业利润相对较高的优势,强力推行企业级信息化及智能化。大数据不仅仅是作用于危险品物流的安全管理,还能作为物流企业经营获利的利器,在危险品分级标准逐步科学合理的基础上,可以利用大数据实现的全供应链物流整体优化带来效益与利润,让企业乐于建设自身的数据平台,从而实现大数据在危险品物流管理部门与危险品物流运营企业间的融合共享。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
“纲举目张,执本末从。”若想在数据分析领域有所收获,一套合适的学习教材至关重要。一套优质且契合需求的学习教材无疑是那关键 ...
2025-06-092025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27