
用大数据建设危险品物流安全平台
危险品在运输与仓储过程中,往往会发生爆炸、泄漏和污染等事故。据不完全统计,仅去年一年就发生了近百起大大小小的生产安全责任事故,造成许多生命的消逝和巨额财产的损失。“百年累之,一朝毁之”,危险品的物流安全问题成为悬在头上的达摩克利斯之剑,有针对性地进行系统有效的预防、预警、应急处置与善后处理,便成为危险品物流发展中的当务之急。
按照维基的解释,危险品是指在使用或者运输、仓储过程中,会产生对环境、健康、安全及财产造成危害的物质,按照化学性质一般分为爆炸物和引爆媒介物、易燃性和毒性气体、易燃性液体、易燃性固态、氧化媒介物及有机过氧化物、毒性及感染性物质、放射性物质、腐蚀性物质和其他危险性物质等九类。
随着我国经济进入中高速增长,对高端化工产品的市场需求持续增长,危险品物流开始步入高速增长期。据统计,2015年全国危险品运输量约为10亿吨,危险品道路运输企业约为1.1万户,运输车辆约31万辆,从业人员约120万人,而每年运输量增速达10%,居全球第二位,且可能很快超过美国成为全球最大的危险品运输国家。
危险品物流的迅猛发展客观要求各管理部门以更快的速度建立起更加完善的危险品安全管理体系。
诚然,我国政府和相关管理部门已陆续建立了一系列规范危险品物流运作的法律、法规、规定和标准,一定程度上提高了危险品物流的安全系数。但近几年来,每年都会发生超过百起安全事故,发生率远高于欧美发达国家,让人们开始质疑这些法律法规和标准的科学性。这其中,既有专业水平不足的问题,也有基础设施条件差的问题,既有管理部门过多而协同管理不足的问题,也有信息化程度低导致监管能力差的问题,不一而足,但核心还是缺乏整体规划和系统建构。
危险品物流中的多头管理是其中最严重的问题之一。交通、公安、质检、安监、工商、环保、卫生、税务、海关等部门分头管理、职能交叉,形成的所谓闭环管理机制,容易存在争利时一哄而上而出现事故时则诿过推卸管理责任的可能,但目前还难以形成一个统一管理的体系,只能依靠技术工具来实现协同管理。
其中,大数据就是提高部门之间协同管理最便利的工具之一。所谓大数据,是指涉及的数据量规模巨大,无法通过传统数据库软件实现获取、存储、管理和分析的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低等特征。大数据的目的,是要把这些分布在各区域、各行业、各节点的非结构化或半结构化且含有意义的数据,依托云计算的分布式数据库和云存储进行专业化处理,实现深度数据挖掘。
危险品物流安全管理的大数据化可谓恰逢其时。在中国,2015被业界称为大数据元年,据调查显示,中国大数据市场已达到115.9亿元。2015年9月,国务院发布了《促进大数据发展行动纲要》,明确从顶层设计中解决政府数据开放共享不足、创新应用领域不广等问题;“十三五”规划也明确提出实施国家大数据战略,到2017年底形成跨部门数据资源共享共用格局。
实际上,危险品物流管理体系的主要目标是安全,其次才是效率;而危险品物流运营企业关注的主要是效益,安全则是约束的门槛。因此,利用大数据实现物流安全管理的需求在于各级管理部门,特别是很多部门还都有非常庞大的数据在手。例如,储存在交通部门的运输工具安全管理、从业人员资格等数据;储存在公安部门的危化品安全管理、剧毒化学品购买许可证、道路运输通行证、运输车辆的道路管理等数据;储存在质检部门的危化品及其包装物/容器的工业产品生产许可证以及储存在安监部门的危化品安全生产许可证、仓储危化品建设项目的安全条件审查、危化品安全使用许可证等数据。
而通过各个区域、各级政府部门建立的大数据平台,可以高度共享协同以往分散存储的安全管理信息数据,从管理源头上实时杜绝任何不符合危险品安全仓储和运输条件的企业、设施装备、从业人员以至安全管理体系,有效规避多头管理中的客户信息数据冲突,让法律法规和标准在企业管理中落地生根。
当然,单纯依靠危险品物流运营企业的自律还难以保证全系统的安全,可以利用大数据进行深度数据挖掘,从危险品的采购、生产制造、包装、分拣、储存、运输、配送等全供应链环节上实现企业级、区域级和国家级的安全风险识别、控制和规避。利用大数据建立强大的分级危险品物流安全监控中心,实时对所有危险品的生产、仓储和运输,实施严格的全流程信息管理,包括货品及货物盛装物的RFID识别标签、车载移动终端、仓储终端、作业人员识别标签等,并建立基于风险识别的预警和报警系统,这有利于危险品物流安全事故发生的应急处置和救援互助。
大数据依赖于各个分散在区域、部门和企业内部的数据库,也取决于各区域、各部门和各企业的信息化水平。不过,借国家大数据建设的东风,首先可以在已有庞大数据源的各区域、各管理部门构建大数据平台;其次可以利用危险品物流企业利润相对较高的优势,强力推行企业级信息化及智能化。大数据不仅仅是作用于危险品物流的安全管理,还能作为物流企业经营获利的利器,在危险品分级标准逐步科学合理的基础上,可以利用大数据实现的全供应链物流整体优化带来效益与利润,让企业乐于建设自身的数据平台,从而实现大数据在危险品物流管理部门与危险品物流运营企业间的融合共享。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18