
你需要数据做什么?大数据应用的关键节点为什么是用户注册?
大数据的目的在于数据营销:你需要数据做什么?营销,转化。如何提升数据的转化率?提升信任感,忠诚度。如何提升信任感?专业,互动。其实早在大数据概念问世之前,这样的商业逻辑早已存在,其中一个关键环节就是注册用户的关系维护和数据挖掘。如果你留心,你会发现注册用户服务环节是360和腾讯的差距,三星和苹果的差距,是优秀和卓越的差距。
如果用心体验,我们可以发现:从用户注册的服务环节,我们可以看到360无法替代腾讯,三星可以替代诺基亚但是无法成为苹果。那些卓越的公司,譬如苹果、谷歌,在吸引用户注册和注册用户服务环节都是做到了极致。
我们先从手机使用的角度来看注册用户服务问题。
两年前,一位母亲这样描述过她女儿丢失一部iphone的事情:丢手机之后,她十分悲伤,母亲为了安慰她,就又买了一部iphone送给她。当她看到icloud帮她找回了通信录和应用之后,顿时愉快多了——苹果不能送给你一部手机,但是苹果可以让你再拥有一部一模一样的iphone。这是用注册用户系统,用icloud云服务解决的。
苹果的iphone的注册用户系统是这样的:
√ 用户必须注册以激活系统。
√ 用户的通信录、邮件、照片、文件可以用icloud备份。
√ 这一切是简单、可靠的。
谷歌的安卓系统也同样实现了类似功能,通过gmail你可以管理通信录、APP。然而遗憾的是无论三星、索尼,还是国内的华为、联想、小米,几乎都阉割了谷歌原版的云同步功能,而用自己的蹩脚的系统去替代——这背后是商业利益,尤其是应用市场。这样的结果就是:一个人可以拥有两台一样的iphone,但是绝不可能拥有两台一样的安卓手机。
以华为为例,华为的华为云服务云平台从架构上说是具备了苹果的icloud功能的,但是从华为云服务可用性来看,基本不具备可使用性。这本身体现了手机厂商们的一个逻辑:硬件做得好就行了,注册用户的服务是免费的,既然免费也不用负责。于是,我们发现几乎全线安卓手机的数据同步,都是腾讯在悄悄地“学雷锋”。
在手机厂商们投入巨大的研发经费、推广经费,比拼硬件配置,比拼价格的背后,我们来反思苹果和腾讯的逻辑:如果你的数据都由这个厂商提供永久服务,你下一次选谁?
我们再来体验一下浏览器。
在浏览器的使用上,最为个人化的功能就是收藏夹。新装电脑和跨平台使用浏览器,最最麻烦的就是收藏夹的同步。在这一点上做的最好的就是谷歌的chrome浏览器,苹果的Safari浏览器。它们的逻辑是:你注册使用,我们帮你同步收藏夹。
而国产的浏览器目前是这样的:注册没有任何好处,没谁帮你同步。手机浏览器完全是hao123逻辑——你的收藏夹我做主。就像UC浏览器,别说保存收藏夹,每次升级都帮你清零!
这样的结果是什么?厂商忽视了用户的信任感,而用户给予的回报是极低的忠诚度,随时可以换一个浏览器。最令我困惑的就是:你们大家天天说用户体验,为何将精力都花在了非关键功能上,而完全忽略了核心功能的体验呢?
我们来看360和腾讯的注册用户体系的差异。
首先,我们理一下注册用户管理的逻辑。注册用户体系要有以下3个主要环节:
√ 如何驱动用户注册?
√ 为注册用户提供什么服务?
√ 挖掘注册用户价值。
我们来对比一下腾讯和360在这几个方面是怎么做的:
看完表单大家应该发现,360驱动注册的是很弱的很边际的需求,而腾讯驱动注册用的是核心需求。注册后腾讯的服务足够充分,而360可以说没什么服务。挖掘上的差距就更大了。所以,360是一家很强大的公司,但是360始终很难以与BAT匹敌。在注册用户这个环节,体现的是优秀和卓越的差距!
注册用户的核心思想是什么?——以客户为中心。每一家公司都很重视推广,推广的目的是什么?——获得用户。获得了注册用户怎么办?让他流失还是留下他并且挖掘价值?这一切取决于你是否用心,是否尊重用户对你的信任。
数据营销的经验告诉我,熟客的转化率是生客的100倍甚至1000倍!如果你不重视注册用户的感受,你的一切推广就会贬值1000倍!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08