
探索大数据技术 发挥视频监控的最大效能
大数据已经成为近几年IT技术发展的新亮点,也成为视频监控应用技术发展的重点之一。杭州海康威视系统技术有限公司解决方案高级经理汤国宝谈到:“充分运用物联网、云计算等技术,利用大数据优势,围绕着智能化、专业化、数据化最大限度发挥视频监控应用效能,构建立体化社会治安防控体系,并将原先的服务专业发展到服务民生。”
视频监控数据有两个方面的内涵——海量和非结构化。视频监控数据量规模庞大,并且随着高清化、超高清化的趋势加强,视频监控数据规模将以更快的指数级别增长;与通常讲的结构化数据不同,视频监控业务产生的数据绝大多数以非结构化的数据为主,这给传统的数据管理和使用机制带来了极大的挑战。这些挑战在一定程度上反映出当前视频大数据处理领域存在的主要问题,同时也对视频大数据处理技术提出了更高的要求。小编根据大数据目前在视频监控领域应用的情况归纳整理了该项技术今后发展应关注的几个问题。
1.视频压缩编解码性能的限制
随着数字视频应用产业链的快速发展,政府、学校、社区、民用以及网络终端所产生的海量视频向传统视频编码标准发出宣战。需要传输与存储的视频数据不断加大就需要更大程度地提高编解码效率,提高视频压缩率,从而降低传输资源消耗和存储空间。网络化进程的加快也要求编码后的视频在快速、便捷传输的同时保证解码还原的视频质量。
视频压缩也制约着智能视频领域的发展。很多情况下我们要求降低解码后的视频损耗,比如多媒体视频认证领域,视频的无损还原是提高算法判断准确度的先决条件,只有控制在一个合理的损耗范围内,它才能提高视频篡改提示的准确度。因此随着视频的网络化、高清化、智能化时代的来临,领先新一代视频编码标准,超越新的技术框架和编码性能,才能在城市级视频应用领域中取得核心的主导地位。
2.智能视频监控领域中的算法检测识别准确率的问题
目前的视频监控方法只能在非常简单的环境下聚焦少量目标,检测、识别、跟踪性能还无法达到一个较高的水准,多数软件都存在场景、环境的限制,例如在简单、纯净的场景中,检测目标背景与前景差别较大时,检测结果较为准确;而在一些人流量密度大的复杂场景中,如地铁、车站、商场,监视成千上万个个体时,准确地识别、跟踪、检测则是一项非常艰巨的任务。
同时算法检测会受到光线、颜色、化妆、摄像机硬件误差及精密度等一系列的问题影响,因此在低端智能与真正的人工智能之间还存在一个较大的鸿沟,它需要计算机处理能力及处理速度的提升。
我们需要的是一种接近人类,甚至高于人类的识别准确率,并且能够检测区分人群行为,预测潜在的群体灾难。这不仅仅在智能视频领域,而且从多领域的交叉融合角度,智能分析的研发与探索对机器人的发展也能够起到积极的推进作用。
3.高清监控摄像机的智能化处理
以往大多数城市级安防监控摄像头录制的视频画面都较为模糊,刑侦破案分析的依据仅仅为模糊画面动作方向,甚至是模糊的像素点,对具体人物细节的描述不清晰导致刑侦难度加大,辅助公安机关研判的力度不强。在智能安防的监控领域,传统的智能分析方法较多的是在CIF格式下进行算法处理,这样处理速度更易达到实时。当传统视频向高清视频转换过渡时需要多重处理策略相结合进行算法分析,这需要持续的研发革新。在从标清向高清的门槛跨越过程中,网络带宽的承载力、视频的显示、存储等问题也不断显现。这就要求尽可能在前端的高清摄像机能实现智能化,这也是智能监控发展的重点之一。
总结:
随着全国各地平安城市项目的大规模推进,视频监控在智能安防领域中发挥着越来越重要的作用。现在不仅在机场、车站、码头等人流集中的公共场所采用视频监控系统,而且在一些办公场所和住宅小区也安装了视频监控系统,在一些如监狱等重要场所更是提出视频监控全覆盖的应用要求。与此同时,视频监控产生的数据将会迅速的增长。在建设智能安防的路上,如何利用大数据发挥视频监控的最大效能与数据本身的应用价值,我们还需进一步探索,克服前进中面临的众多瓶颈问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30