京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据教你如何让大忙人及时回复邮件
“我每天都收到成百上千封邮件,大多数邮件都很重要,我却没有精力一一回复。”在线视频学习平台One Month的联合创始人和首席执行官Mattan Griffel表示,要想让那些每天被邮件轰炸的大忙人也能及时回复你的邮件,也是需要技巧的。
网上教人们如何写邮件的建议不少,但大多还没有数据做支撑。最近,邮件效率服务商Boomerang通过分析5300多万封邮件数据,找出了一些影响邮件回复率的窍门。总结起来就是两大点,方便他人及勾起兴趣。
首先,不要让对方觉得回复你邮件是件耗时耗力的麻烦事。要缩短的就是对方阅读邮件内容的时间,其中就涉及内容的长度和阅读难度。
比如Mattan Griffel曾提出,缩短内容有助于提高回复率。“如果邮件只有两到三句话,收件人读起来会更轻松。如果一封邮件超过两段,收件人可能会过会儿再读,收到回复的时间也就拖长了。”此次Boomerang的研究也发现,一封英文邮件字数最好是50至125个单词之间,这时回复率将可能高于50%。
由于Boomerang统计的都是英文邮件篇幅。按照翻译时中文原稿的字数约为英文译稿的1.5倍,我们只能大概估算下,中文邮件最佳长度可能在75到188字之间。
当邮件长度超过2500个英文单词时,回复率就低于35%了。如果想发长篇大论,最好以附件形式发送;另一方面,当邮件长度低于50个单词时,邮件回复率也会迅速降低,一封只有25个单词的邮件,与一封2500词长的邮件一样只有44%的得到回应机率;而如果邮件只有标题没有内容,得到回应的机会更小,只有 11%。
字数要求同样还体现在邮件主题上。数据显示,不包括自带的“转发”字眼时,只有3到4个英文单词的主题回复率最高。标题越长,得到回应的机会越小。当然,主题也是不能为空的,通常没有标题的邮件回复概率只有 14%。
除了控制字数,此次研究最大发现之一就是,电子邮件的阅读难度也会影响回复率。像一个小学3年级学生一样写作时效果最好。
阅读难度越大或者废话越多的内容越容易耗费对方的时间,从而降低对方立刻回应的意愿。按照大学程度阅读水平撰写的邮件中,得到反馈的只有39%,还不及充满语法错误的幼儿园水平邮件的反馈率。
即使是给知识能力水平高的人发送邮件,也应当尽量简化缩短语句,使用最简单明了的词汇。“要让收件人一目了然地知道自己到底需要做什么。”Mattan Griffel建议,如果不得不写一封非常冗长的邮件,那就把希望对方做的事情放在最前面。将段落拆成短句,将重要部分加粗或者斜体。“一两个句子成段好过一大段文字。”
当然,具体还是要根据邮件的写作背景来看。如果你是要与教授讨论你的博士论文细节,而他还将参与你的博士后奖学金评估,那还是要注意每个用词都尽可能专业;但如果你是写给一个足球迷来吐槽上次球队糟糕的表现,那就最好用三年级小学生都能看懂的大白话。
勾起收件人兴趣也是提高回复率的好方法。比如可以在邮件中向对方提出几个好问题。统计数据显示,当你在邮件中提出一到三个问题,邮件会有 50% 的概率得到回复。“当人们不忙的时候,让人产生好奇的邮件吸引他们;但当人们忙的时候,好奇心减弱,实用主题的邮件更多地被阅读。”宾夕法尼亚大学沃顿商学院教授Adam Grant表示。不过贪多可没什么好处,包含8个问题的邮件比只有3个问题的回复率要少20%。
另外,别以为客观讲事实才是最好的,其实影响回复率的关键因素还有邮件的表达情感和写作角度。Boomerang发现,邮件内容稍显积极或消极,是最容易得到回应的。此外,主观内容一般比客观内容的回复率要高 8%。
统计数据显示,相比于完全中性的邮件内容,轻微积极或者轻微消极的邮件内容,可以让回复率提高 10% 到 15%。比如投诉时适当的消极态度最容易获得商店经理的回应。当然情绪也不能过度,否则回复率也会随之降低。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16