
数据淘,让数据真正产生商业价值
在国内还有很多人对大数据处于一知半解当中的时候,已经有众多公司走在了大数据商业应用的前列,而卧龙大数据公司则是其中的典范。其成功的商业模型堪称行业典范,本文以卧龙大数据为例,告诉你数据公司是如何将数据变现的。
首先谈到数据变现,先要知道大数据时代的需求和趋势
卧 龙大数据的创始人,《大数据时代》的中文译者周涛谈到:在大数据时代有三个明显的趋势:第一个趋势是数据总量爆炸性的增长。现在每天产生的数据量相当于公 元元年至大约一千年全人类产生的数据总量,而且这个量还在以指数级规律不断增长。所以大数据时代第一个重大的矛盾,就是日益增长的数据总量和我们普通人分 辨甄别数据能力之间的矛盾,我们把它形象地叫做数据过载。
第二大趋势是数据的形态发 生了巨大的变化。以前我们接触的绝大多数数据是结构化的数据,说白了就是一张张的二维表格,简单易分析。但是现在新增的数据更多的变成了非结构化的数据, 比如语音、图像、视频、社交关系网络、空间移动轨迹等等。这些数据量非常大,里面藏着巨大的价值。但和结构化的数据不一样,我们没有一种普适的办法去挖掘 这个价值,这就带来了我们大数据时代的第二个大的挑战——如何挖掘非结构化数据中的价值,甚至把它转化为结构化的数据。
第 三就是数据的关联形态发生了变化。大数据公司有很多数据比如说新浪微博的数据,腾讯QQ的数据,线下公安局的犯罪记录数据。这些数据在不同的部门价值都非 常大,但是数据和数据之间并不沟通,类似于信息的孤岛。所以一般人没有办法知道在微博上的那个人就是在淘宝上买东西的那个人,也就是在医院看病的那个人。 但现在不一样,通过一些商业模式、技术手段、资本、产品等等办法,可以打通不同领域的数据,能够将不同平台不同维度的数据通过同一个人、同一家企业、同一 部手机、同一个位置关联起来。所以,怎么样在安全、隐私可控的情况下,使这些跨领域关联的数据产生1+1远大于2的价值,是大数据时代的又一大挑战。
针对于上述三大挑战,卧龙大数据做了对应的三方面基础工作:
一是对海量数据的大规模采集、存储、分析、处理,目前我们的数据采集存量已经超过PB级别,这相当于国家图书馆25倍的信息量,同时每天还在以TB的量级在更新。这些数据包含了新闻、社交、电商、招聘、企业、旅游等方方面面。
二是在进行非结构化数据的结构化处理。例如:该公司可以实现用计算机对连续文本进行语义理解,根据语义内容再将数据内容转化为结构化数据进行数据分析预测。譬如淘宝的商品信息数据就是非结构化的,商品颜色、规格、风格、包装等诸多信息杂乱且不规则的表达在商品标题和商品描述中,我们能用计算机将之一一识别并按照结构化数据的特点填放到“表格”中,这样就可以使商品数据的分析变得十分简单。
三 是在做数据的跨域关联。通过把不同维度的数据进行跨域关联来综合描绘一个目标体,这个目标体可以是人、商品、品牌、商铺等等。比如我们以前从单一信息维度 来描述我们的用户,只能标注这个用户的性别、年龄等基本信息,现在通过关联微博等社交数据后我们则可以知道用户的爱好和社交圈关系,关联电商数据后我们则 可以知道用户的行为偏好和消费习惯,甚至关联招聘数据以了解用户的工作情况,关联POI地理定位数据了解用户的生活工作地点……当然这些数据都是经过脱敏 处理的,让用户画像在为人们提供更便捷、更贴心、更个性化服务的同时,做好个人的隐私保护。
卧龙大数据目前的产品有两项:一是“数字画像“系列,二是“数据淘”。
数 字画像是依托于跨域关联技术推出的产品。在个人画像和企业画像方面,卧龙大数据已经向国内知名的银行、征信机构、信贷公司等提供服务,帮助他们丰富目标客 户的数据维度,使其在征信判定上成本更低,效果更准确。在商品画像方面,卧龙大数据与国内外多个跨境电商机构合作,帮助跨境电商企业选择国内外不同地区里 评价最优、销量最好、利润最高的跨境贸易商品。在品牌画像方面,我们依托海量数据储备和实时采集,将“品牌”这类人们能够普遍感知但无法定量计算的概念具 象化为数值,为不同行业的品牌商提供从品牌覆盖度、舆论热度、美誉度、忠诚度,到市场表现、科技力、涉诉情况、资本表现、用户细分、商品优缺点等维度的定 量化数据展示,帮助品牌商利用大数据在精细化生产、个性化营销、实时化品牌保护等方面提供决策支撑。
数 据淘是卧龙大数据搭建的一个数据垂直搜索平台,它与目前已有的数据交易平台是有本质区别的。该平台的核心不在“交易”,而在“搜索”。它将会整合线上线下 海量数据信息,打造成为数据行业的“百度”“谷歌”,帮助数据需求方快速找到数据拥有方,成为连接数据需求者、数据供给者以及各类第三方数据交易平台的搜 索入口。该平台将承诺免费为数据供需双方搭建联系桥梁,使数据流通更加透明、更加低成本。一切机构、企业、个人以及第三方数据交易平台都可以通过数据淘展 示数据,亦可以通过数据淘发布数据需求,使存在于不同领域的数据能够更好地无障碍流动,繁荣数据市场。
数据淘的出现,将改变中国大数据产业链上数据源获取困难的情况,同时也给那些拥有数据源的公司带来更多的增值机会。在为行业打通数据孤岛、实现数据流通的同时,也从侧面积极的推动了中国大数据的全面发展,意义非常重大。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18