京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据或将解决房地产行业瓶颈问题
正被大数据改变的房地产行业,也会面临瓶颈,日前多家房地产相关企业发布大数据职能产品,宣称挑战房地产信息不对称。
国内首款房地产大数据人工智能产品“MASA-慧赢销”(简称MASA) 团队负责人陈焱指出,大数据、人工智能等技术引入房地产行业,形成“互联网+房地产”大循环,将最终解决房地产交易信息不对称瓶颈。
同策咨询研究总监张宏伟指出,打通、连接、提升商业台前台后所有场景,以资产数据化为目标,为客户规划技术路径,以“技术+服务”为基础,从互联网建设开始,一步步实现管控,一方面解决了房地产信息不对称的瓶颈,另一方面也为房地产资产证券化积累基础数据,将对全行业转型产生影响。
知名科技作家陈根则指出,“互联网+”浪潮对房地产业带来的影响,一方面是在硬件设施方面,借助互联网技术将物业、住宅内外的控制设施与手机之间建立连接;另外是软件方面,借助手机APP实现物业服务无人化管理。
陈根认为,随着“互联网+房地产”的不断深入,房地产领域的大数据价值将会成为新的商业蓝海。
信息不对称难题
房地产产业链对于信息透明的需求已经很迫切,平台服务商应运而生。
比如房企拿地前需要大量市场调研,但缺乏有效的调研工具和依据;房产中介经纪人在服务时,只能根据与客户见面时获得的信息,猜测客户对房源地段的偏好。可很多经纪人只能用一通又一通的电话获取信息。
对房屋买卖双方而言,他们需要的则是更加明确的信息,希望压缩看房与谈判时间,尽快解决问题。
陈焱将这些问题归结于房产交易的三大瓶颈:“沉默数据+经验判断”;缺乏对客户的把握性;缺乏有效工具来评价营销效果。
目前的“互联网+房地产”大多局限于服务模式的改变,包括从原先的线下交易向O2O转变、利用共享经济提倡互助交易等;但缺乏从技术上解决信息不对称的根本问题。
“MASA-慧赢销希望在这些问题上有所突破”。陈焱说,由同策咨询、TalkingData和脉策数据联合研发的MASA,提出了对全面解决房地产交易各个环节和环节中各方对信息的需求满足。
要把大数据、人工智能等技术引入“互联网+房地产”,以解决房地产交易在信息不对称上的瓶颈,关键是线下楼盘数据的铺点和采集。这也催生了各种大数据公司。比如容易网专为零售业提供全渠道整合营销方案及配套设备及商业圈媒体运营,从2012年成立至今,已超过300家商场结盟。
核心在对决策的支持
在日前举行的一个大数据论坛上,香港科大计算机系主任杨强教授在演讲中指出,少量公开数据的获取难度不大,但是真正对于商业决策有帮助的大量公开数据的收集难度是很大的,搜索、整理、挖掘、呈现出其中的关联关系,并呈现出一个具象化的结果,难度就更大,所以各个行业均需要一个更加高效、直接的方法帮助企业与个人把杂乱信息转换为决策支持。
悦商科技总经理吴弼川认为,商业+互联网的核心,关键在全面行为数据化和经营空间扩展,实现每一个场景和消费者都与前后台数据库无缝对接。
据陈焱介绍,MASA团队构建了房地产行业、客户、城市三个方面的底层数据库,整合了TalkingData和银联智惠两大数据运营商,为产品核心算法提供数据源。据悉,MASA团队用了近一年的时间进行线下楼盘数据的铺点和采集,建立了首个可用于分析算法建模的楼盘字典信息库。
他举例说:“MASA根据人们对房源的了解需求,建立了丰富的楼盘字典,在定义一套房源的属性时,需要收集60个大项、300多个小项的数据。”
这只是MASA对房源数据的收集和整理,同时还有针对客户数据的整理和分析。最终目标是实现对房产交易的精准洞察,从而能同时帮助买卖双方。
在同策咨询董事长孙益功看来,随着大数据的应用,未来有三类公司可以从中受益:产生数据的公司,比如谷歌等制造数据的企业,通过整理、分析,可以创造价值;具备数据能力的公司,比如那些利用数据能对人的决策、对商业流程以及商业判断产生本质影响的企业;具有数据思维的公司,即将大数据思维应用到公司决策、生产和服务中。
显然,上述多个大数据产品只是一种工具和探索,希望让更多处在房地产产业链上的企业和个人从中受益。
陈根指出,可以预见不久的将来房地产销售领域将被人工智能所取代,也即具有人工智能技术的机器人,不过这一切实现的基础是基于大数据。而机器人销售成交率的高低,一方面除了人工智能技术本身的“智能”程度以外;另外一个关键因素就是大数据的质量。
综合业内人士评价指出,值得关注的是在大数据时代如何保护用户隐私,或者可以理解为用户数据在商业挖掘过程中的商业边界问题。当然,对于房地产企业而言,除了互联网+房地产之外,大数据+房地产或许是个更具有潜力的价值点。不论是互联网+房地产,或是房地产大数据营销,除了看到数据的商业价值之外,或许我们需要更多的思考大数据时代用户的隐私权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16