京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据面前,电视台恐将沦为内容代工厂
大多数人往往忽视这个收入来源,毕竟相对于2.67亿美元的广告营收来说,这只是个小数字。另一方面,媒体平台长期以来的收入来源就是两种,广告商付费或者用户付费,Twitter目前的收入主要来自于广告业务,也理所当然。但我有一种强烈的预感:不管Twitter市值会达到多少,未来数据业务会成为Twitter的巨大宝藏,而且还可能是个取之不竭的宝藏。
上个月最后一天,就在大家忙着规划国庆出行的时候,一条Facebook正式与美国四大电视网络合作,向其提供数据报告的新闻同样被很多人忽视。在美国电视网络与社交媒体的互动中,Twitter长期以来都扮演着重要角色:Twitter曾和尼尔森咨询机构合作研究Twitter内容与电视收视率的关系;Twitter已收购两家社交电视分析机构Bluefin Labs和Trendrr;今年3月,Twitter与全美职业橄榄球联盟NFL合作,为用户提供比赛集锦、回放等定制类节目。因此,Facebook的举动被认为是在电视领域挑战Twitter的开始。
这并不难理解,作为媒体传播链中最末端的一环,社交媒体承担着消化来自电视、报纸等传统媒体所制造的话题的责任。从社交媒体上话题属性来说,娱乐性的话题备受关注,而电视台则是天然的娱乐话题制造中心(这一点国内外的电视台基本上都是类似的),也因此,社交媒体需要电视台提供的娱乐资源,从而使得自身平台上的讨论更活跃。
倘若就此认为社交媒体会从属于电视台这个传统媒体,那就太短视了。在社交媒体与电视台的合作中,社交媒体的核心资源是用户,而电视台的核心资源则是内容。内容是否有价值完全取决于针对什么样的用户,在这一点操作上,电视台用了半个多世纪的时间都没有实现,但社交媒体做到了,为什么?因为他们有足够的数据,更因为他们有能力对这些数据进行有效的分析,从而将内容有针对性的匹配给用户。所以,在这个社交媒体与电视台的合作框架里,社交媒体已经占据先机,而且这种优势会越来越大。
这种趋势在电商行业里已经越来越明显。电商与厂商的合作模式也非常类似于社交媒体与传统媒体如电视台的合作模式:本质上,电商和社交媒体都是一种信息分发渠道;都处在产业链的下游,直接面对用户;都属于轻公司(相对传统企业来说)。
传统意义上,电商只是零售业的网上形态,无非是低价进货高价卖出的赚钱模式。这也是很多人质疑电商可否真正盈利的原因之一。但电商手中的数据越来越多,其和上游厂商的关系也会发生微妙的变化。以亚马逊为例,亚马逊可以通过对后台数据的分析,找出一些销量好、关注度高、利润高的商品,从而直接向上游厂商定制,甚至可以自己贴牌生产,此时,对亚马逊来说,它就不再仅仅是一家电商,而成为一家虚拟的生产商,它握有厂商最想得到而无法得到(至少不能完全得到)的用户数据,完全有能力对生产哪种产品、生产多少有发言权,而厂商呢,最终可能沦为亚马逊的代工厂。
以这种趋势来看社交媒体与电视台的所谓“合作”,则更让我们对那些还在沾沾自喜的传统媒体们感到悲哀。不妨想象一下,随着数据的进一步增加,Twitter完全有能力通过数据挖掘,分析用户癖好,向美国某家电视台定制一部电视剧甚至向好莱坞定制一部电影。我们已然看到纸牌屋的成功,但Netflix的用户量远远少于Twitter和Facebook,相应的,其数据量也无法与两大社交巨头相比。这让我有更多信心,期待Twitter或Facebook定制或自拍影视剧的成功。到那个时候,电视台一如那些家电厂商们,曾经产业链的上游“王者”,将彻底成为一个产业链最低端的内容代工厂。至于该制作什么内容,请谁来主演,都取决于社交媒体。
这是一个告别旧时代与迎接新时代的“混合年代”。大数据的威力越来越大,从零售到媒体,从人们的物质需求到精神食粮,大数据正在改变这些古老行业的行为规则。无他,趋势而已。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14