
大数据面前,电视台恐将沦为内容代工厂
大多数人往往忽视这个收入来源,毕竟相对于2.67亿美元的广告营收来说,这只是个小数字。另一方面,媒体平台长期以来的收入来源就是两种,广告商付费或者用户付费,Twitter目前的收入主要来自于广告业务,也理所当然。但我有一种强烈的预感:不管Twitter市值会达到多少,未来数据业务会成为Twitter的巨大宝藏,而且还可能是个取之不竭的宝藏。
上个月最后一天,就在大家忙着规划国庆出行的时候,一条Facebook正式与美国四大电视网络合作,向其提供数据报告的新闻同样被很多人忽视。在美国电视网络与社交媒体的互动中,Twitter长期以来都扮演着重要角色:Twitter曾和尼尔森咨询机构合作研究Twitter内容与电视收视率的关系;Twitter已收购两家社交电视分析机构Bluefin Labs和Trendrr;今年3月,Twitter与全美职业橄榄球联盟NFL合作,为用户提供比赛集锦、回放等定制类节目。因此,Facebook的举动被认为是在电视领域挑战Twitter的开始。
这并不难理解,作为媒体传播链中最末端的一环,社交媒体承担着消化来自电视、报纸等传统媒体所制造的话题的责任。从社交媒体上话题属性来说,娱乐性的话题备受关注,而电视台则是天然的娱乐话题制造中心(这一点国内外的电视台基本上都是类似的),也因此,社交媒体需要电视台提供的娱乐资源,从而使得自身平台上的讨论更活跃。
倘若就此认为社交媒体会从属于电视台这个传统媒体,那就太短视了。在社交媒体与电视台的合作中,社交媒体的核心资源是用户,而电视台的核心资源则是内容。内容是否有价值完全取决于针对什么样的用户,在这一点操作上,电视台用了半个多世纪的时间都没有实现,但社交媒体做到了,为什么?因为他们有足够的数据,更因为他们有能力对这些数据进行有效的分析,从而将内容有针对性的匹配给用户。所以,在这个社交媒体与电视台的合作框架里,社交媒体已经占据先机,而且这种优势会越来越大。
这种趋势在电商行业里已经越来越明显。电商与厂商的合作模式也非常类似于社交媒体与传统媒体如电视台的合作模式:本质上,电商和社交媒体都是一种信息分发渠道;都处在产业链的下游,直接面对用户;都属于轻公司(相对传统企业来说)。
传统意义上,电商只是零售业的网上形态,无非是低价进货高价卖出的赚钱模式。这也是很多人质疑电商可否真正盈利的原因之一。但电商手中的数据越来越多,其和上游厂商的关系也会发生微妙的变化。以亚马逊为例,亚马逊可以通过对后台数据的分析,找出一些销量好、关注度高、利润高的商品,从而直接向上游厂商定制,甚至可以自己贴牌生产,此时,对亚马逊来说,它就不再仅仅是一家电商,而成为一家虚拟的生产商,它握有厂商最想得到而无法得到(至少不能完全得到)的用户数据,完全有能力对生产哪种产品、生产多少有发言权,而厂商呢,最终可能沦为亚马逊的代工厂。
以这种趋势来看社交媒体与电视台的所谓“合作”,则更让我们对那些还在沾沾自喜的传统媒体们感到悲哀。不妨想象一下,随着数据的进一步增加,Twitter完全有能力通过数据挖掘,分析用户癖好,向美国某家电视台定制一部电视剧甚至向好莱坞定制一部电影。我们已然看到纸牌屋的成功,但Netflix的用户量远远少于Twitter和Facebook,相应的,其数据量也无法与两大社交巨头相比。这让我有更多信心,期待Twitter或Facebook定制或自拍影视剧的成功。到那个时候,电视台一如那些家电厂商们,曾经产业链的上游“王者”,将彻底成为一个产业链最低端的内容代工厂。至于该制作什么内容,请谁来主演,都取决于社交媒体。
这是一个告别旧时代与迎接新时代的“混合年代”。大数据的威力越来越大,从零售到媒体,从人们的物质需求到精神食粮,大数据正在改变这些古老行业的行为规则。无他,趋势而已。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01