京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代量化投资大有可为
5月25日,由中国证券投资基金业协会和上海陆家嘴管委会联合举办的量化对冲论坛在陆家嘴金融城举办,来自公私募一线的量化投资人围绕国际量化对冲的新趋势、国内量化对冲行业的规范发展等话题展开了讨论。与会嘉宾表示,大数据和互联网技术的发展将推动量化投资在资管行业大有可为,量化对冲基金也是市场重要的长期资金来源,建议能够松绑对股指期货的投资限制,给予政策的正向激励。
信息爆炸赋予量化用武之地
富善投资总经理兼投资总监林成栋表示,量化和大数据在投资中已然崛起,根本原因是大数据时代信息的爆炸和计算效率的提高导致成本的下降,从而支撑起大量创新的投资方法。比如利用网络数据支撑新的财务模型从而来获得更有效的投资决策,利用第三方网站和移动APP公司的数据可以帮助投资公司更高效和精准地从短期和长期等角度来判断目标公司的趋势。
他进一步表示,未来量化方法将从主动管理(获取绝对收益、超额收益)领域渗透至被动管理(Smart beta)、资产组合配置领域(FOF)、机器人投顾等各个层面。投资标的方面量化方法将由股票期货类扩展至固定收益类资产(利率和信用债券)甚至相关场外衍生品(CDS、MBS等)。围绕量化方法开发新的投资产品或投资标的成为一个非常有潜力的发展方向。
南方基金数量化投资部总监刘治平也具体分析,大数据时代量化投资的逻辑性在于,中国A股有近2700个上市公司,2015年有1139只个股其收益率超出全A指数30%以上,深度调研的主动投资管理组合一般管理30—50只股票,主动选股难度大大增加;移动互联网时代每天股吧、微博 、微信等信息铺天盖地,人类过去4年信息的积累量等同于之前的总量,信息大爆炸大大增加了主动处理信息的难度;此外,受内幕交易打击的影响,基金经理调研公司可以得到的信息越来越有限。因此,靠市场广度获取超额收益的投资方法将会有更好的市场份额上升机会。
他表示,量化对冲投资在当前的政策环境中受到了一定限制,但量化多头策略拥有广阔的发展空间。中国公募量化基金占比和发达国家相比,还非常小,除了量化对冲产品被机构广泛接受之外,机构投资者在灵活配置权益类上几乎没有任何配置给量化投资管理人,这与量化基金的业绩表现并不匹配。
量化对冲基金带来长期资金
博道投资董事长莫泰山则从另一个视角提出,量化对冲基金是市场重要的长期资金来源,对资本市场能够产生积极作用。量化对冲基金可基本回避市场波动的影响,收益来源于模型驱动的阿尔法,收益区间稳定、可预期,呈现出穿越牛熊的稳健风格。这种产品特性决定了其必须长期、持续投资于股票市场,必须精选优质的“胜者”型上市公司进行投资,客观上发挥了优胜劣汰的作用,是市场的重要稳定力量。
林成栋也表示,相信在中国资本市场发展的剧目中,未来量化投资的发展会是个关键的角色。量化投资会像一个高目筛,筛选二级市场的参与者,降低中国市场的散户力量,提升机构投资者的力量,平衡机构和散户比例,促进中国资本市场的长期健康发展。
在去年市场异常波动、股指期货投资收紧之后,量化对冲产品的运作受到了一定的影响。实际操作中,部分产品采取了补充新策略、寻找替代性的对冲工具如海外市场期货、增加风险敞口等措施,部分产品则选择了离场观望。
莫泰山特别建言,在加强监管的同时,尽快解除对股指期货的投资限制,站在引入长期投资资金的高度,对长期稳健投资于资本市场的量化对冲基金,给予政策的正向激励。他估算认为,如果政策能够得以松绑,预计现有量化对冲产品的“复活”能够为市场带来2000亿-3000亿的资金规模。与此同时,在当下的市场环境下,大量资金面临投资压力,收益稳健的量化对冲基金的吸引力凸显,除了现有产品之外,短期还可以再吸引2000亿—3000亿的资金。长期而言,则预计能有1万亿元左右的资金流入。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26