
互联网+时代,看大数据如何解决购房者痛点
于开发商们而言,他们的黄金年代已经结束;而对于房产经纪行业而言,这才是黄金时代的开始。因为,新房市场,尤其是一线城市的新房市场正在走向萎缩,二手房交易在未来空间变得越来越富有想象力。
市场够大,但挑战也够多。
在 低消费高频、不会有大质量差距的领域,只需要重构链接价值和用户沟通价值即可,大家烧钱就可以带来用户尝试,用户尝试就能撬动业务流转,业务流转就能够占 领市场。但在二手房领域,消费者不会这样,他们需要真实的数据,有保障的服务,专业的经纪人,这些才是达成消费者房产类交易的基础条件。
长久以来,中国的二手房市场,信息不对称,虚假房源太多,部分从业人员良莠不齐,服务能力不行,售后服务缺失,业主需要承担较大风险,这导致了行业中不少问题与“痛点”的产生。
不过,这些行业“痛点”,正在由于大数据的建立、互联网+时代的到来而得到解决。
与许多二手房中介公司相比,链家在互联网和大数据方面的探索要早的多。IT出身的左晖早已深谙这背后的逻辑,为了把链家做成一家大的平台,他将公司办公地点从北京朝阳门搬到了西二旗,这个集百度、联想、新浪等互联网大咖为一体的创新圣地。
早 在2008年,链家引入SE系统(Sale Efficiency),并启动IT和互联网化战略,每年直接投入都在亿元以上,仅房源数据库这块的投入就超过4亿元——还不包括在大数据领域的投入与试 错。七八年的时间,链家已经逐步从原先的IT公转变为DT公司。链家在IT化建设、大数据标准化等方面的探索主要包括以下四个方面:
一 是构建大数据库与楼盘字典。通过人工,链家把全国的存量房的真实情况做了一个大摸底,基于这些真实的房源数据,链家统一建立了类似美国MLS(房屋多重上 市系统)的楼盘字典,按照“国家-城市-城区-商圈-小区-楼-单元-层-户型-户-房间”的层级去排序,所有房源的数据都纳入其中,全国每一个房源只有 一个编码。目前,链家在全国30个城市里数完了6000万套房子,并且录入了链家自己开发的“楼盘字典”。 未来,链接的房源数据库将扩增覆盖到全国100个重点城市、涵盖1亿套房源。
大量的投入让链家的楼盘字典效果明显。一个数据显示,链家现在北京的报盘率达到了85%-90%左右,也就意味着,如果北京某个区域二手房市场上有100套房源挂牌****,链家就会在楼盘字典里掌握其中85-90套左右的房源。
二 是提高转化效率,实现交易标准化。买房人的需求其实是不具像的,不容易被表达出来,而且是随机发生的,链家网要做的就是帮客户把这个漏斗不断地收缩。链家 开发了SE系统,它的核心是实现从房源委托到达到交易的转化效率。SE系统可以盯住每人每单,每一单委托,系统会按规则分配责任盘,维护和服务好业主。这 就意味着,在SE系统之下,客源的匹配从依赖于人转化为依赖于系统。
三是实现经纪人的标准化、管控化服务。在二手房交易中,经纪人是非常关键的角色,即便是再真实的房源,如果碰到不专业、素质低下的经纪人,交易也无法达成。因此,链家在经纪人方面实行强管控和标准化。
一 方面,链家给经纪人设定“定级制”,定级的依据是积分,积分越高,提点越高,这就倒逼经纪人不断提升自己专业知识和客户服务水平。另一方面,在链家网上还 有房地产经纪人的评分功能,在透明的环境下,房地产经纪人会更加自律,同时也增加了消费者的信任感。此外,链家也出台了红黄线制度,被查处发布假房源的经 纪人会被记一条黄线,两条就自动走人。
依托互联网对数据进行标准化管理,链家实现二手房交易信息的无差别共享,改变房产行业中信息不透明的状况,提高买卖双方效率,这无疑能够大大提升消费者的购房体验。而通过大数据的管控,链家不仅占领了市场,还赢得了口碑,成为房地产经纪服务行业一个新的标杆。
四 是不断进行技术革新,提升用户体验。为了提高服务水平,链家不断通过技术革新来提高服务水准。2008年,链家地产就推出了“链家在线”,开启链家独立的 电子商务网站,为消费者创造全新的网络找房体验,同时为房产经纪行业的网络营销树立新的行业标准。2010年,链家在线改版升级,增加了包括国内首创的 720度全景小区及室内看房、智能房源推荐、以及3D地图、手机看房、实时沟通等多项突破性的找房功能。紧随移动互联大潮,链家又打造了掌上链家APP, 为客户提供更快更精准的房源信息。
每一次的升级、每一次的创新与突破都体现了链家地产以客户利益为中心、提高行业服务水平的决心。
在买方时代,这个已经不能由开发商单方面主导的游戏战场,特别是在互联网+时代,用户体验是一切的核心。解决不了二手房的交易痛点,提升不了用户体验,就跑不赢移动互联网这个大时代。
房产经纪行业等同于信息服务业,核心是数据与人的Business。数据与技术是基础,通过数据的不断完善、技术的不断革新,链家经纪人服务水平不断得到提高。但说到底,技术不过手段,在服务行业,最关键的还是人,还是软实力。
针对服务不规范、服务效率低下的问题,链家逐步构建“安心服务承诺”体系,给客户提供买房、卖房全生命周期专业化、标准化、规划化的服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29