京公网安备 11010802034615号
经营许可证编号:京B2-20210330
哪个行业应该更多地投资在大数据上?
对于这个行业投资#大数据#的问题,至少下面两个方面的理解: 哪个行业应该考虑在大数据以及分析上面进行高于总体平均水平的投资?哪个行业在一开始采用大数据战略的公司数量比较少,因此,有很多公司需要“唤醒服务”。
为了回答第一个问题,我们来看看不同行业在大数据方面花费的平均水平的调查(Exhibit VII-1)
Exhibit VII-1: 哪个行业在大数据中花费最多?
Q14 :2012每个行业公司在大数据上的平均花费。(百万美元)
四种行业——电信,旅游相关,高科技还有银行/金融服务——告诉我们他们在大数据上的花费远远高于平均行业水平。那么这些行业有什么共同点呢?首先,他们有大量的客户交互行为(特别是线上的)。另外,根据我们的数据显示,他们中有三个从网络订单中产生高过平均水平的收入。
Exhibit VII-2:
每个行业从网络订单中收入的百分比。2012每个行业的客户收入中网络订单的占比情况
如果你的公司不是互联网公司,那么,你很容易认为大数据跟你的关系不大。理由是现在客户跟公司交互的方式一般是在线的远远超过从他们网站的进行交易。这种电子交互的案例比比皆是:社交媒体工具例如Facebook,Twitter 和Pinterest;用户在他们的电话上面的手机应用;机器上的传感器会把他们的生命体征反馈给设备制造商等。
如果你只是单纯地看那些大数据的早期采用者——那些互联网公司持续地修补它们的网站并对他们网站上的浏览数据进行挖掘,从而给他们的客户销售更多他们想要的——那么你就很有可能错过下一个大数据应用的浪潮。这些大数据应用者,例如通用电气,就会用大数据来查明欺诈,预测机器故障,以及在一些其他产品上面去使用并且对传统企业的业务进行改善。
现在让我们来看一下我们提出的第二个问题:在哪个行业是比较少公司开始使用大数据,因此这些行业的很多公司需要一个“唤醒”机制。通过我们的调查,我们发现在下面四个行业,只有一小部分公司在大数据上的预计投资回报超过50%: 日用消费品(只有9%的公司的投资回报率是>50%)公用事业(15%)保险业(17%)媒体与娱乐(19%)
这预示着一个信号:这些行业中的大多数公司离行业内的佼佼者还有很长的一段距离。
另外一个方法去阐述哪种行业的公司在大数据方面具有最大的机会,就是要明白它们是不是在押注“最划算的赌局”——那些行业尽管进行最低的大数据投资都能够得到很丰厚的回报。(例如,大数据支出占收入的百分之一)。
Exhibit VII-3 展示了能源与资源,生命科学,旅游相关,银行,保险以及重工业的这些数据。
Exhibit VII-3:谁是获利最多的赢家并且将最求更多?
画成2*2的表格,数据看起来是这样的:
Exhibit VII-4: 通过投资回报率和大数据的花费来划分行业
大数据花费(平均行业收入的百分比)
对于看待那些大数据方面领先的行业,有很多不同的观点。不过在我们调查的这12个行业内,有一点是毋庸置疑的:大数据应用的佼佼者花费在大数据的投资是那些落后者的3倍,在2012年中。佼佼者的平均花费是2400万美元,而对于落后者,则是700万美元。(看Exhibit VII-5。)似乎需要一定的基础投资在大数据上,才能够保证进行这场高水平的游戏。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08