
云计算和大数据促进人工智能的实质发展
人工智能关健技术深度学习是在云计算和大数据日趋成熟的背景下取得实质性进展,云计算为深度学习提供了平台,大数据为深度学习提供了矿石,深度学习因此才得以在云平台、在大数据中淘出黄金。
人工智能
事实上大数据在机器生物的进化史上起到了举足轻重的作用,不管是语音、图像识别,语义计算,所有的都是在拥有足够大数据的基础上,互联网,移动互联网带来的大数据是人工智能研究进了一大步的关健原因,另外深度学习神经网络大大提高了语音和图片系统的识别率,但同时对支撑大数据平台的云计算也提出了更高的要求。很多人工智能专家提出,大数据和人工智能与云计算的发展不符。
从google的人工智能引擎TensorFlow开源说起,相比它facebook的Torch,微软的DMTK,IBM的SystemML. 不能不说TensorFlow对异构端的支持和强大灵活的算法 是众多人工智能开源项目的独有的,这也可能是其成功的关健。人工智能研究常常需要强大的就算机集群,机器学习需要训练各种算法,需要在数万台机器编写深度学习软件,构建深度学习网络。
TensorFlow可以用来编写各式各样的算法,包括深度神经网络模型的训练和干扰算法,并且它已经被用于实验研究中,也被部署在产品的机器学习系统中,已经被应用于十几种计算机科学以及其他学科的领域中,包括语音识别、机器视觉、机器人学、信息检索、自然语言处理地理信息提取以及计算机辅助药物设计。
笔者认为TensorFlow可以融合各种计算能力,又是有希望建立一套通用的深度学习模型的人工智能平台,其开源项目给很多开发者带来机会。科研部分需要用到GPU计算,研究成果实现商用时就更适合用CPU计算,GPU与CPU的融合计算是人工智能、生命科学研究对计算提出的新的要求。通常的理解CPU负责计算GPU负责图处理,CPU的通用性更更好,但单个CPU性能成为整个系统运算能力的瓶颈,CPU+GPU是一个强大的组合,CPU包含几个专为串行处理的优化心,GPU则是专为并行处理而设计,由数千个更小,更节能的核心组成。
CPU运行程序中行部分,GPU运行并行部分。一个科研项目在研发阶段往往对GPU运算用得比较多,商业阶段后就CPU运算更多,不管是在研发过程还是商用阶段 GPU+CPU都不是完全独立,所以现在云服务提供商们应需整合资源提供GPU+CPU 计算服务。宝德科技在高性能计算一直走在前列,早大与华在基因完成了第一张黄种人基因图谱的绘制和大熊猫基因图谱的绘制,最近又推出一全系列支持多GPU的高性能服务器结合宝德云公有云,私有云多种方式,宝德云计算为人工智能、生命科学,高能物理等科研项目提供了全方位的计算服务。
Facebook 、Google、 微软、IBM 先后开源的人工智能项目将会来给越来越多智能的服务,高性能计算与云计算将交融参与其中。在计算的交融,大数据的交融,商业生态的交融将现将开启生物智能和智能生物和谐共生的新场景。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04