
不解决这六个问题,农商行应用大数据就是扯
中国人民银行参事、国家信息化专家咨询委员会委员陈静曾指出:没有信息化,就没有金融的现代化。进入信息化时代以来,银行的生存环境发生了巨大的变化,信息化建设和大数据的应用,已经成为银行业竞争的一个筹码,也是获得竞争优势的一个方法。
大数据在帆软传说哥看来,有两个含义,一是大量的数据,二是能产生价值的数据。对银行来说,数据量从来都不缺,缺少的是能让产生价值的数据。传说哥曾在《大数据时代下,百货行业如何革命?》一文中讨论过数据的应用方向,一是围绕业务、用户的数据应用,另一个是围绕企业自身管理、运营的数据应用。对于银行业来讲数据的应用方向也是如此。老祖宗教育我们,打铁还需自身硬,所以提取能产生价值的数据用于优化企业运营,是大数据时信息化建设的关键一步,也是当前银行业正在走的一步。
银行业按照形态,分为农村商业银行和城市商业银行两类。这次先随传说哥一起探讨农商行信息化的现状和问题。
农村商业银行与城市农村商业银行的信息化建设不同,城市商业银行是经过分散的小系统整合成统一联网系统,再逐渐演化丰富,进而形成一套信息化基础平台,是一个大一统平台。而农村商业银行是逐渐从信用联社的网络中剥离,全国两千多家农商行,其信息化之路也是相对分散和独立的,信息化水平尤其是数据应用水平较城市商业银行落后许多。
帆软公司银行业信息化顾问杨扬在其论文《农商行统一数据分析平台建设方案》中把农商行信息化水平由低至高分为4大类型,大致为:
1、农商行没有数据中心,没有报表系统,报表在各个系统呈现,其余都是Excel文件,日常管理麻烦、响应低效,业务人员经常不知道去哪边找数据,数据的利用效率最低;
2、农商行有报表系统,但是响应缓慢,导致报表系统价值削弱,业务人员继续找技术人员索要数据,形成大量Excel文件,无法进行有效分析汇总;
3、农商行有报表系统,维护也及时,不过技术人员疲于应对日常取数报表需求,业务人员分析意识薄弱,导致为了看报表而做报表;
4、农商行的业务人员可以自主取数进行各种数据、报表分析,技术人员提供自主取数平台,同时协助业务部门落实数据挖掘,结合移动端呈现,达到数据价值呈现的目的。
很不幸的是大多数农商行都停留在第二类别以前,少数处在第三类别。这三个类别信息化程度虽然不同,但总结起来,无非就是系统多的问题、需求变更的响应问题、口径不统一的问题、数据展示分析效率的问题、无法移动办公的问题和科技部人事动力的问题,具体如下:
1:系统多。农商行的薪酬、小额贷等自建系统比较多,各个系统报表通过代码实现,样式杂乱,交接麻烦,对于前端决策和业务部门需求,无法提供有力支撑;
2:需求变更多。业务部门为了运营和管理需要,经常新增报表,也会依据领导关注的领域进行分析调整,以及省ODS口径调整也会带来报表重新设计等;
3:口径不一致。省统计口径和市、县不一致,市县需要重新加工;
4:取数效率慢。业务人员取数需要技术人员提供,严重影响双方效率;
5:无法做到移动办公。领导出差无法实时查看到行内核心KPI指标,缺乏移动数据呈现;
6:科技部价值无法体现:大部分系统都是软件商开发,科技部只是维护工作,体现不出自己的价值;
可以看到,这六大问题,基本上掐死了农商行应用大数据的命脉:数据没办法应用或者很难去用,组织和实现数据应用的部门无动力和价值感。如此的情况,怎么可能去玩好大数据呢?
新时代的到来,总会造就一批弄潮儿,也会抛弃一批吊车尾。要想实现在大数据时代弯道超车,就要让数据为运营服务,为企业利润服务,为企业战略服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
正态分布与偏态分布的核心区别解析 在统计学中,数据的分布形态是理解数据特征、选择分析方法的基础。正态分布与偏态分布作为两 ...
2025-08-06基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-06抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-06解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30