
量化和大数据将在金融创新中崛起
高盛指出,量化和基本面分析结合选股有利于为更细节的商业问题提供简洁回答,这是通过数据取得超额回报的关键。大部分投资者只关心收益结果,并不关心收益从哪来。另外,替代型数据比如信用卡、谷歌搜索甚至卫星图像等约有10%的正确率。
本月稍早,高盛举办了第二届创新研讨会。针对金融产品创新,研讨会得出“量化和大数据在投资中已然崛起”的结论。数据爆炸和计算效率成本的下降,支撑起大量创新投资方法(例如:网络数据/替代性数据支撑新的财务模型)来获得更有效的决策。
据1月贝莱德总裁Rob Kapito及董事长兼执行长Larry Fink签署的备忘录显示,贝莱德将两个选股部门合二为一。其中一个是更为传统的“基本面”选股团队(fundamental equity team),另一个为专注于复杂数据分析的“量化”选股团队(quantitative equity team)。
高盛在研讨会报告中指出,贝莱德内部选股部门的合并是由于两个考虑:其一,大部分投资者只关心收益结果,并不关心收益从哪来。第二,两个团队可以互相学习。目前来看,投资决策对基本面数据(大数据,机器学习)的依赖度正在增加。有大数据支撑,更有利于主动型投资发现正确估值。
华尔街见闻稍早提及,今年以来美股乃至全球市场出现的巨震,以及包括阿克曼在内的多位对冲基金投资大佬折戟沉沙,让投资者的选择更加谨慎。另外,随着美股从连年持续上涨进入滞涨,投资者对跑赢指数的需求比前几年更加强烈。
高盛在报告中指出,我们所在的市场类型在扩张周期,市场动作反应较迟缓,投资者分歧较少,资产配置较为类似。比如,油价最近的走势可以说是在市场预料中的。通常市场消息过去一到两个月,基金策略才会有所应对。基金从单一策略到多策略并行,事实上增加了不透明度(是一种去风险化)。而越来越多投资者青睐ETF中Smart Beta产品,或者说以Smart Beta的策略来交易。
在量化分析领域,一般股票的beta系数代表该股票的系统性风险,反映的是某一投资对象相对于大盘的表现情况。而alpha系数则代表该股票出去系统性风险以后的额外回报。
因此不妨简化理解,“beta”指广泛的大市表现,“alpha”则指代跑赢大盘的超额收益。事实上,Smart Beta策略的崛起就是在被动型投资中增加主动投资的优势。
据高盛,Smart Beta产品已经占到美国上市ETF市场的四分之一。特别是去年,三分之一新发行ETF产品都是采用Smart Beta策略。晨星公司(Morningstar)统计显示,使用smart beta策略的基金规模已经从2008年的1030亿美元飙升至2015年底的6160亿美元。
华尔街见闻稍早提到,具体来说,采用“Smart Beta”为策略的基金本质上追求的不再是对指数的紧密跟踪,而是希望通过指数编制过程中对选股和权重安排的优化,获得跑赢传统市值加权指数的超额收益。它结合了主动投资和被动投资两个优点,能够突破市值加权指数的限制,为投资者提供更加灵活的、多样化的投资组合策略。
高盛指出,将量化和基本面分析策略结合,可以为更细节的商业问题提供简洁的回答,这才是通过数据取得行业超额利润(Alpha Generation)的关键。
不过,走红就意味着备受质疑,Smart Beta策略也是如此。见闻上月曾提到,Research Affiliates是美国最先开发出smart beta指数的公司之一,其首席执行官Rob Arnott表示,该策略的愈发流行可能导致投资表现剧烈下滑,“在未来三到五年里,我预计(一些smart beta投资者)将以非常失望的结局收场。”
Arnott指出,很多smart beta基金超越大盘的表现是因为它们投资了更贵的股票,而不是这些股票本身的基本面有多好,“这些smart beta追逐高收益的行为实际上是要承担额外风险。”
他还称很多smart beta策略是“在beta的名义下实则追逐收益”的,即按照过去的表现来判断股票强势与否。“如果你因为一个股票以前的涨势判断他之后也能涨,这些理由跟基本面没什么关系,因此你很容易买在泡沫的顶部。”
因此,Arnott认为,一旦当资金推出的高估值股票无法再延续涨势,其泡沫会很快消解,或者早早被透支掉了未来的涨势,这些smart beta策略将加大这些股票的估值回归历史均价的风险。
无独有偶,安联集团(Allianz)全球投资者部门联席负责人Andreas Utermann本月早些时候也表示,smart beta并不一定能够让投资者受益。他说:“Smart beta既不smart也不beta。”
除了Smart Beta 策略的崛起,高盛在报告中还提出一个观点:利用网站数据。
它指出,第三方网站和移动APP公司可以帮助投资公司从短期和长期等角度来判断趋势。比如纽约数据公司YipitData通常是整合和分析公司挂在网站上的信息。高盛援引YipitData指出,(在传统市场数据以外,)替代型数据(比如信用卡、twitter、谷歌搜索甚至卫星图像等等),大约有 10%的正确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08