
量化和大数据将在金融创新中崛起
高盛指出,量化和基本面分析结合选股有利于为更细节的商业问题提供简洁回答,这是通过数据取得超额回报的关键。大部分投资者只关心收益结果,并不关心收益从哪来。另外,替代型数据比如信用卡、谷歌搜索甚至卫星图像等约有10%的正确率。
本月稍早,高盛举办了第二届创新研讨会。针对金融产品创新,研讨会得出“量化和大数据在投资中已然崛起”的结论。数据爆炸和计算效率成本的下降,支撑起大量创新投资方法(例如:网络数据/替代性数据支撑新的财务模型)来获得更有效的决策。
据1月贝莱德总裁Rob Kapito及董事长兼执行长Larry Fink签署的备忘录显示,贝莱德将两个选股部门合二为一。其中一个是更为传统的“基本面”选股团队(fundamental equity team),另一个为专注于复杂数据分析的“量化”选股团队(quantitative equity team)。
高盛在研讨会报告中指出,贝莱德内部选股部门的合并是由于两个考虑:其一,大部分投资者只关心收益结果,并不关心收益从哪来。第二,两个团队可以互相学习。目前来看,投资决策对基本面数据(大数据,机器学习)的依赖度正在增加。有大数据支撑,更有利于主动型投资发现正确估值。
华尔街见闻稍早提及,今年以来美股乃至全球市场出现的巨震,以及包括阿克曼在内的多位对冲基金投资大佬折戟沉沙,让投资者的选择更加谨慎。另外,随着美股从连年持续上涨进入滞涨,投资者对跑赢指数的需求比前几年更加强烈。
高盛在报告中指出,我们所在的市场类型在扩张周期,市场动作反应较迟缓,投资者分歧较少,资产配置较为类似。比如,油价最近的走势可以说是在市场预料中的。通常市场消息过去一到两个月,基金策略才会有所应对。基金从单一策略到多策略并行,事实上增加了不透明度(是一种去风险化)。而越来越多投资者青睐ETF中Smart Beta产品,或者说以Smart Beta的策略来交易。
在量化分析领域,一般股票的beta系数代表该股票的系统性风险,反映的是某一投资对象相对于大盘的表现情况。而alpha系数则代表该股票出去系统性风险以后的额外回报。
因此不妨简化理解,“beta”指广泛的大市表现,“alpha”则指代跑赢大盘的超额收益。事实上,Smart Beta策略的崛起就是在被动型投资中增加主动投资的优势。
据高盛,Smart Beta产品已经占到美国上市ETF市场的四分之一。特别是去年,三分之一新发行ETF产品都是采用Smart Beta策略。晨星公司(Morningstar)统计显示,使用smart beta策略的基金规模已经从2008年的1030亿美元飙升至2015年底的6160亿美元。
华尔街见闻稍早提到,具体来说,采用“Smart Beta”为策略的基金本质上追求的不再是对指数的紧密跟踪,而是希望通过指数编制过程中对选股和权重安排的优化,获得跑赢传统市值加权指数的超额收益。它结合了主动投资和被动投资两个优点,能够突破市值加权指数的限制,为投资者提供更加灵活的、多样化的投资组合策略。
高盛指出,将量化和基本面分析策略结合,可以为更细节的商业问题提供简洁的回答,这才是通过数据取得行业超额利润(Alpha Generation)的关键。
不过,走红就意味着备受质疑,Smart Beta策略也是如此。见闻上月曾提到,Research Affiliates是美国最先开发出smart beta指数的公司之一,其首席执行官Rob Arnott表示,该策略的愈发流行可能导致投资表现剧烈下滑,“在未来三到五年里,我预计(一些smart beta投资者)将以非常失望的结局收场。”
Arnott指出,很多smart beta基金超越大盘的表现是因为它们投资了更贵的股票,而不是这些股票本身的基本面有多好,“这些smart beta追逐高收益的行为实际上是要承担额外风险。”
他还称很多smart beta策略是“在beta的名义下实则追逐收益”的,即按照过去的表现来判断股票强势与否。“如果你因为一个股票以前的涨势判断他之后也能涨,这些理由跟基本面没什么关系,因此你很容易买在泡沫的顶部。”
因此,Arnott认为,一旦当资金推出的高估值股票无法再延续涨势,其泡沫会很快消解,或者早早被透支掉了未来的涨势,这些smart beta策略将加大这些股票的估值回归历史均价的风险。
无独有偶,安联集团(Allianz)全球投资者部门联席负责人Andreas Utermann本月早些时候也表示,smart beta并不一定能够让投资者受益。他说:“Smart beta既不smart也不beta。”
除了Smart Beta 策略的崛起,高盛在报告中还提出一个观点:利用网站数据。
它指出,第三方网站和移动APP公司可以帮助投资公司从短期和长期等角度来判断趋势。比如纽约数据公司YipitData通常是整合和分析公司挂在网站上的信息。高盛援引YipitData指出,(在传统市场数据以外,)替代型数据(比如信用卡、twitter、谷歌搜索甚至卫星图像等等),大约有 10%的正确率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25