
用R进行文本挖掘与分析:分词、画词云
要分析文本内容,最常见的分析方法是提取文本中的词语,并统计频率。频率能反映词语在文本中的重要性,一般越重要的词语,在文本中出现的次数就会越多。词语提取后,还可以做成词云,让词语的频率属性可视化,更加直观清晰。比如下图:
这是根据总理2014年的政府工作报告制作的可视化词云,分词和词云的制作都是用R,词频的统计用了其他软件。这个图能很直观看到,工作报告的重心是”发展”,这是大方向,围绕发展的关键要素有经济建设、改革、农村、城镇等要素。不过这张图中的词语还需要进行优化,因为有些术语或词组可能被拆分成了更小的词语,没有展示出来,为了演示,我就没再花更多时间去优化词库,主要是讲讲分析的方法。
下面是分析方法:
首先,要获得要分析的内容,做成txt文本文件。这个很简单,把要分析的内容粘贴到记事本,保存为txt文件就可以了。
其次,用R进行分词。这里要分几点来讲:
要用R进行分词,需要安装并装载两个library,一个是Rwordseg,另一个是rJava。rJava的作用是提供java的库,供Rwordseg调用。安装后,调用语句如下:
library(rJava)
library(Rwordseg)
说说Rwordseg,这是一个R环境下的中文分词工具,引用了Ansj包,Ansj是一个开源的java中文分词工具,基于中科院的ictclas中文分词算法,采用隐马尔科夫模型(HMM)。Rwordseg牛逼的地方三点,一是分词准确,二是分词速度超快,三是可以导入自定义词库,有意思的是还可以导入搜狗输入法的细胞词库(sqel格式),想想细胞词库有多庞大吧,这个真是太厉害了。
分词的语法。很简单,一个函数就搞定了,看下面:
segmentCN(“待分析文件的完整路径”,returnType=”tm”)
注意:R中的路径用”\\”分割文件夹。参数returnType表示返回的分词格式是按空格间隔的格式。执行完成后,会自动在相同目录生成一个”待分析文件名. .segment.txt”的文本文件,打开可以看到是酱紫:
然后,要统计词频。到了这里,每个单词出现的频率是多少,需要统计出来。这个词频统计,我在R中找了一阵,没有找到合适的工具来统计,有人说lm可以统计,试了试不行。于是乎用了其他的软件。这方面的软件不少,大家可以找找,总之,统计出来是酱紫的:
最后,就是画成词云。R有工具可以画词云,当然互联网上有不少网站可以在线制作词云,做得也很漂亮,有兴趣可以去找找,我这里只谈R中的方法:
安装并装载画词云的工具包wordcloud:
library(wordcloud)
读取已经统计好词频的文件:
mydata<-read.table(“已统计好词频的文本文件的完整路径”,head=TRUE)
设置一个颜色系:
mycolors <- brewer.pal(8,”Dark2″)
画图:
wordcloud(mydata$词汇,mydata$词频,random.order=FALSE,random.color=FALSE,colors=mycolors,family=”myFont3″)
然后就可以看到最上面的那个图了。
补充说明:
1、安装rJava:需要先在电脑上下载安装JDK,即java devolop kit,然后再通过R从CRAN上选择安装rJava,否则,即使安装了rJava也用不了。前提是JDK必须先安装好;
2、安装Rwordseg,这个包不在CRAN上,所以不能在R中直接选择在线安装,需要用下面两种方式来安装,输入:
①
install.packages(“Rwordseg”, repos = “http://R-Forge.R-project.org”)
②(如果上面不能安装,则用下面的)
install.packages(“Rwordseg”, repos = “http://R-Forge.R-project.org”, type = “source”)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22