
大数据显示互联网行业加班最狠 怎么破?
“加班”这个词对于现代上班族来说一定不会陌生,尤其是在互联网行业奋斗的人们,而在互联网行业中的程序猿们更被誉为加班中的“战斗机”。近日,滴滴发布的《中国智能出行2015大数据报告》更是从侧面印证了这一点,数据中显示,北京是全国加班最严重的地方,白领19点前下班的人数比例不到四成。综合多个行业的“大排名”,下班时间最晚前10名分别是:可口可乐、奇虎360、宝洁、阿里巴巴、京东、森马服饰、联合利华、百度、华为、腾讯。Top10公司中,互联网公司占据半壁江山,BAT全部上榜,其次为快消行业。
数据虽只是佐证,但的确能说明一些问题。那么,为什么互联网行业加班最严重?
网友推举,做什么最容易加班?
网友在谈到这个问题时由衷感叹:“做IT的命苦啊,搞开发的、做维护的加班最多,制造业这种现象比较少。”网友同样附和,认为做IT维护类工作的人加班最多,因为机器时刻运转,他必然也要整天在维护。虽然目前的技术已经向支持运维自动化的方向发展,但毕竟不是一时能看到成果的。
目前,网友在一家互联网创业公司工作,他分享了自己真实的故事:“最初,平台上线的这段时间几乎每天都在加班。没什么特别的原因,就是因为要赶项目进度。毕竟3个月开发一套平台,还要确保按时上线,这么十几个人去弄还是有难度的。虽然我在其中只是负责内外部资源的协调,但做为一个小团队的“头羊”,临阵脱逃肯定是不可取的。一边看着兄弟们拼死拼活的开发,一边是女儿在电话里殷切的呼唤,心里五味杂陈,冰火两重天。”不过他还是表示,创业公司大多是这样,这种加班还是可以理解的:“一将功成万骨枯,IT从业人员辛勤付出的同时,也在实现着自己的价值,学以致用,我觉得是值得的。”
其实,在网友的观点中可以发现,“IT”、“创业”是加班较为集中的地方,近一年互联网创业潮几乎达到巅峰,而互联网行业更是与开发、运维等密不可分。所以,互联网成为加班比例最高的行业也就不难理解了。除此之外,互联网行业瞬息万变的特性也决定了这一点,想在这个圈子里发展,你必须对突发事件足够敏感,一个事物通过互联网爆火可能仅需要几天甚至是几个小时,你需要不断关注并且与自身结合,借势营销,而营销方案之下,更多的还是开发人员加班加点的开发维护。
加了那么多班,真的有用吗?
提到加班是否有用,网友首先跳出来喊道:“先别说有没有用,不加班绩效考核都不及格!”网友原从事对日工作,他表示:“原来我做对日的时候经常加班,但工作基本没什么技术含量,拼的就是中国廉价的劳动力。这属于整个一个行业原因,和中国人不适应日本客户的严格要求也有关系,中国程序员做事有时候确实有些粗糙。”
网友与他们的观点有出入,他说:“我不常加班,只加过一次一个月的班,原因是人太少,项目也紧。我认为,所有的加班都是不合理安排时间的结果。在别人安排任务时尽量多要时间,以防止可能有变的因素,早点做出来联调测试,发现问题也能及时修改。”
网友也认为加班与效率不高有关,他说:“我们应该多学习快捷的方法,提高工作效率,尽量减少加班。每遇到一个问题就生成一个解决方案,久而久之工作效率也能有很大提升。”
怎样提高效率,减少加班?
对于提升工作效率,网友表示,他以前在Microsoft的领导经常向他强调:“重要的不是你做得多快,而是你对自己工作能力和工作量有合理的估计!也就是,给你一个任务,你要知道如果你用正常工作时间大概会花多久,不是打保票下决心说要攻克难题要不吃不喝不眠不休!只有正确的时间估计,才能让团队的进度合理。”
以前一直做PM,T通过做大大小小的项目积攒了经验,在应对流程性或突发性事件上有足够的准备和承受能力的,他总结了自己对时间管理的心得与大家分享。
想提升工作效率也不难。关键有这样几点:
1、事务的优先级:不管多少事情,总有急、慢之分,先理清楚事情的紧急程度再去动手,磨刀不误砍柴功,别担心会延误,计划得好,事半功倍;
2、事务的本质:不要被纷乱复杂的表面需求所迷惑,要学会看穿表象去究其本质。往往听完业务部门的需求分让人头很大,感觉不知所云,那么,换个人或方式,先确认对方需求点,再根据自己的理解复述,确定后再去套入到某个领域之中;
3、象限法:其实就是一种分类方法,可以按你的理解把事情归纳到不同的象限,再跟据分布情况得出处理优先级。总之得到任务之后,就是不断地按规则拆解、细分。如果你是一个LEADER,当面对大任务量时,可以有条不紊地合理分配工作任务,也不失为一种“得民心”的好途径。
不得不说网友中确是藏龙卧虎,以上对于互联网行业加班的分析已经十分深入。不过,身处互联网行业,无论是大环境影响还是个人原因,加班已经是普遍现象,我们只能在能力范围内尽量调整,提升效率。临近春节,很多人的心可能早早就飞往假期了,不如在这一时刻回望近一年的工作学习,稍作休整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17