
大数据如何赋予医疗行业最大价值?
当在医院看医生的时候,我们信任医护人员的专业知识,相信他们会根据我们的情况以行之有效的科学方法做出处理,这被称为循证医学(EBM)。它的意思是,医生们开具的处方和选择的处理方式是在临床研究中已经被验证过,是正确的、可行的。
虽然“循证医学”这个词只能追溯到20世纪90年代初,但这一概念却是古时留下来的。对照临床试验早在20世纪40年代早期就已经进行过了,临床知识和专业知识也早已在医学杂志和教科书中被传播。(事实上,最古老的的医学杂志至今仍在运转中,The New England Journal of Medicine,成立于1812年,比首次临床试验更早,第一次临床试验在1747年进行的,是为水手们进行坏血病的治疗。)
临床试验和研究均针对疾病、健康和可以缓解症状或彻底消除疾病的治疗方法的研究,他们不断探索哪种治疗方法能有效的治疗哪些疾病,以及病人接受治疗后的效果。在世界各地,循证医学是医疗提供者所依照的准则。但是在大数据时代,这可能会被改变。
最初,小团体在测试新的治疗方法时会进行临床试验,以验证所用方法的治疗效果,并确定有何副作用。当一个临床试验有希望成功时,它就会被扩大到更多的人群中。一般进行此类实验时,会将新的方法独立于其他方法进行试验,将患者分成不同的组,每个组进行不同的治疗。此分配过程为随机分配,病人会随机分到不同的组中。
为了保障参与者的权利和提高试验的可靠性,临床试验必须符合严格的科学标准。然而,这并不是说就没有方法上的缺陷和风险存在,且在临床试验中,以小型群体为样本所得出的结果,并不能完全代表更广大的群体。而这正是大数据可以为医学提供助力的地方。通过挖掘世界上经过实践的临床资料,也就是目前所有的病人医疗记录:病人的实际情况、他被什么治疗手段治疗过、最后的效果如何,我们可以得到很多治疗病人的方法。
Apixio是一个人工智能计算机公司,总部位于加利福尼亚,它坚定的着眼于为患者者提供医疗服务,在实践研究基础上提供单独个性化定制服务。Apixio的首席执行官Darren Schulte解释道,“我们的系统可以从医学实践中学习更多的东西,通过计算处理来改进我们的临床护理方法。这其实更像一个‘医疗保健学习系统’。对于什么方法有用,什么方法没用,我们会从真实世界不断更新的数据中获得,如此会更加准确。”
80%有关患者的医疗和临床资料都是非结构化数据,如医师的书面笔记、咨询记录、放射科资料、病理分析结果以及从医院的出院记录等等。
Schulte医生在成为Apixio的CEO之前是任其首席医疗官,他说,“如果我们想学习如何更好的照顾病人,了解普遍人群的健康状况,我们需要从这些非结构化数据中找寻研究,才能得到不一样的结果。”
电子健康档案(EHR)存在已久,但它们是以不同的格式存在于不同的系统中,并不是直接为我们思考分析而设计的。所以,在Apixio分析如此多种类的数据之前,他们需要先从各种来源中提取数据(如家庭医生诊所、医院、政府的医疗记录等等)。然后,再将这些信息转换成计算机可以分析的格式。医生的笔记有很多不同的格式,一些为手写,一些事扫描的PDF文件,所以Apixio使用OCR(光学字符识别)技术来将这些创建成文本信息,以供电脑阅读理解。
达到个体分析水平的数据可以创建一个患者的数据模型,将大量人口的模型汇总后,就能较为准确的从更大范围中获得疾病的患病率和其治疗模式等。
Schulte解释道,“我们创建了一个‘病人对象(patient object)’,其本质上是使用从文本处理、文本挖掘和编码中挖掘出的数据,建立的医疗数据框架集合。通过创建这些个体资料,并将相似的个体资料分组,我们可以判断哪些方案能够对这个人有用,哪些没用,等等这些基础个性化医疗方面的问题。”
然而,如何让医疗保健提供者和健康保险共享出数据,是一个很大的挑战,Apixio通过确保获得数据后自身所能产出的价值,才克服这一困难,得到入口。正如Schulte所说,“除非你能解决目前的关键问题,这些组织才会给你提供访问真实数据的入口。”因此,重点是实际结果和能够解决问题,而不是炒作大数据概念。Schulte说,“医院的CIO们通常看不到很多正在被大数据解决的实际问题。他们看到的更多是无法为其提供帮助的,华而不实的仪表盘。而实际对他们有帮助的是解决现在存在的问题。”
另一个巨大的挑战是,你必须确保这些涉及到病人健康数据的资料是安全的,特别是在一些健康数据泄露事件被曝光之后。2014年,被盗医疗数据在所有被盗数据中所占比例高达43%,而医疗部门也意识到了自2010年起医疗被盗数据的大幅增加(远超过企业或政府部门)。Schulte指出,数据安全就相当于“赌注”,它是在医疗大数据领域进行相关动作的必备基础,“在订立每一个新合同之前,我们都必须向对方证明我们的安全性。”病人的数据必须在存储和传输过程中加密,Apixio从不公开个人健康信息(PHI),除非是由Apixio工作人员在绝对有需要时访问。
那么,实践证明医学是否能够代替循证医学,成为医疗保健行业的黄金准则?也许不会这样。但毫无疑问,我们即将有新的方式去了解、处理和预防疾病,这一点十分令人兴奋。正如Schulte所说,“从医疗保健的方式来看,我们正处于一个全新的世界,这种方式以数据洞察力为驱动,更加精准熟练。”融合了循证医学和实践医学的未来,医生可能有能力为病人提供最好的治疗结果,这正是所有的医疗专业人士期望来到的一天。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25