
大数据如何赋予医疗行业最大价值?
当在医院看医生的时候,我们信任医护人员的专业知识,相信他们会根据我们的情况以行之有效的科学方法做出处理,这被称为循证医学(EBM)。它的意思是,医生们开具的处方和选择的处理方式是在临床研究中已经被验证过,是正确的、可行的。
虽然“循证医学”这个词只能追溯到20世纪90年代初,但这一概念却是古时留下来的。对照临床试验早在20世纪40年代早期就已经进行过了,临床知识和专业知识也早已在医学杂志和教科书中被传播。(事实上,最古老的的医学杂志至今仍在运转中,The New England Journal of Medicine,成立于1812年,比首次临床试验更早,第一次临床试验在1747年进行的,是为水手们进行坏血病的治疗。)
临床试验和研究均针对疾病、健康和可以缓解症状或彻底消除疾病的治疗方法的研究,他们不断探索哪种治疗方法能有效的治疗哪些疾病,以及病人接受治疗后的效果。在世界各地,循证医学是医疗提供者所依照的准则。但是在大数据时代,这可能会被改变。
最初,小团体在测试新的治疗方法时会进行临床试验,以验证所用方法的治疗效果,并确定有何副作用。当一个临床试验有希望成功时,它就会被扩大到更多的人群中。一般进行此类实验时,会将新的方法独立于其他方法进行试验,将患者分成不同的组,每个组进行不同的治疗。此分配过程为随机分配,病人会随机分到不同的组中。
为了保障参与者的权利和提高试验的可靠性,临床试验必须符合严格的科学标准。然而,这并不是说就没有方法上的缺陷和风险存在,且在临床试验中,以小型群体为样本所得出的结果,并不能完全代表更广大的群体。而这正是大数据可以为医学提供助力的地方。通过挖掘世界上经过实践的临床资料,也就是目前所有的病人医疗记录:病人的实际情况、他被什么治疗手段治疗过、最后的效果如何,我们可以得到很多治疗病人的方法。
Apixio是一个人工智能计算机公司,总部位于加利福尼亚,它坚定的着眼于为患者者提供医疗服务,在实践研究基础上提供单独个性化定制服务。Apixio的首席执行官Darren Schulte解释道,“我们的系统可以从医学实践中学习更多的东西,通过计算处理来改进我们的临床护理方法。这其实更像一个‘医疗保健学习系统’。对于什么方法有用,什么方法没用,我们会从真实世界不断更新的数据中获得,如此会更加准确。”
80%有关患者的医疗和临床资料都是非结构化数据,如医师的书面笔记、咨询记录、放射科资料、病理分析结果以及从医院的出院记录等等。
Schulte医生在成为Apixio的CEO之前是任其首席医疗官,他说,“如果我们想学习如何更好的照顾病人,了解普遍人群的健康状况,我们需要从这些非结构化数据中找寻研究,才能得到不一样的结果。”
电子健康档案(EHR)存在已久,但它们是以不同的格式存在于不同的系统中,并不是直接为我们思考分析而设计的。所以,在Apixio分析如此多种类的数据之前,他们需要先从各种来源中提取数据(如家庭医生诊所、医院、政府的医疗记录等等)。然后,再将这些信息转换成计算机可以分析的格式。医生的笔记有很多不同的格式,一些为手写,一些事扫描的PDF文件,所以Apixio使用OCR(光学字符识别)技术来将这些创建成文本信息,以供电脑阅读理解。
达到个体分析水平的数据可以创建一个患者的数据模型,将大量人口的模型汇总后,就能较为准确的从更大范围中获得疾病的患病率和其治疗模式等。
Schulte解释道,“我们创建了一个‘病人对象(patient object)’,其本质上是使用从文本处理、文本挖掘和编码中挖掘出的数据,建立的医疗数据框架集合。通过创建这些个体资料,并将相似的个体资料分组,我们可以判断哪些方案能够对这个人有用,哪些没用,等等这些基础个性化医疗方面的问题。”
然而,如何让医疗保健提供者和健康保险共享出数据,是一个很大的挑战,Apixio通过确保获得数据后自身所能产出的价值,才克服这一困难,得到入口。正如Schulte所说,“除非你能解决目前的关键问题,这些组织才会给你提供访问真实数据的入口。”因此,重点是实际结果和能够解决问题,而不是炒作大数据概念。Schulte说,“医院的CIO们通常看不到很多正在被大数据解决的实际问题。他们看到的更多是无法为其提供帮助的,华而不实的仪表盘。而实际对他们有帮助的是解决现在存在的问题。”
另一个巨大的挑战是,你必须确保这些涉及到病人健康数据的资料是安全的,特别是在一些健康数据泄露事件被曝光之后。2014年,被盗医疗数据在所有被盗数据中所占比例高达43%,而医疗部门也意识到了自2010年起医疗被盗数据的大幅增加(远超过企业或政府部门)。Schulte指出,数据安全就相当于“赌注”,它是在医疗大数据领域进行相关动作的必备基础,“在订立每一个新合同之前,我们都必须向对方证明我们的安全性。”病人的数据必须在存储和传输过程中加密,Apixio从不公开个人健康信息(PHI),除非是由Apixio工作人员在绝对有需要时访问。
那么,实践证明医学是否能够代替循证医学,成为医疗保健行业的黄金准则?也许不会这样。但毫无疑问,我们即将有新的方式去了解、处理和预防疾病,这一点十分令人兴奋。正如Schulte所说,“从医疗保健的方式来看,我们正处于一个全新的世界,这种方式以数据洞察力为驱动,更加精准熟练。”融合了循证医学和实践医学的未来,医生可能有能力为病人提供最好的治疗结果,这正是所有的医疗专业人士期望来到的一天。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22