京公网安备 11010802034615号
经营许可证编号:京B2-20210330
寻找大数据时代金融集中存储解决方案
银行是我国最早安防应用领域之一,在新时期,历经诸多技术变革后,必然在存储系统出现新变化。
银行监控现状
视频监控是安防行业中发展最快、空间最大的子门类。据悉,到十二五规划末期将实现产业规模翻一番的总体目标,年均增长率达到20%左右,2015年总产值将达到5000亿元,实现增加值1600亿元。金融监控市场约占中国视频监控市场6%左右,就此计算,到今年金融安防在激增,将达到300亿元。
此外,目前我国有各类金融营业网点超过35万个,仅邮政储蓄网点就接近4万个。据有关部门预计,2015年,我国ATM机超过40万台。从每百万人口拥有的ATM数量指标来看,中国ATM需求缺口依然很大。与此同时,更加便捷的ATM机和自助银行将成为下一步各银行发展的重点。目前我国银行安防设备应用已基本形成五年一更新的规律,再加上每年对安防系统必不可少的升级工作,就形成了金融行业几乎每年百亿规模的安防市场需求。因此,我们需要了解到,偌大的市场,我们面对的现实是银行传统监控方案是各银行营业网点采用的是数字图像监控体系。该图像监控体系通常是基于本地监控,即各营业网点各自组建一个完整的监控体系,分别配有监控主机、监视器、数字摄像头等设备。
新时期,这种监控方案已经跟不上时代的发展,出现许多弊端:
1、复杂,成本高昂:各网点均需配备专人负责图像监控、设备保养维护等繁琐工作。
2、安全性低:由于监控中心维护均设在各网点本地后台,极易被人恶意破坏销毁监控信息数据。
3、响应慢:由于网点和支行之间无法共享监控图像信息,一旦网点有事件发生,上级单位不能及时全面地掌握有关情况。
若能在总行统一构建集中监控管理中心,将大大减少维护投入、管理成本,提升安全性和响应速度。而现今各网点构建专线网络,以及网络摄像、网络存储技术的成熟,为实现集中监控提供了技术保证。
大数据时代银行监控存储方案选择
我们所说的新时期,是指大数据安防的到来。大数据是信息技术与互联网产业发展到特定阶段的产物,从互联网到物联网,从云计算到大数据,信息技术正在从产业基础走向产业核心。而银行业作为与信息技术深度结合的行业,互联网思维和决策数据化已开始嵌入经营管理的全流程。大数据安防实质是能够为银行提供全方位、精确化和实时的安全保护和决策信息支持。所以,在银行行业集中存储的需求极为明显。
大数据时代银行监控的集中存储是在网点监控分中心的基础上,在总行设立统一的监控中心进行集中存储,从而节省人手,建立网点-支行-总行间的应急快速反应体系。而集中存储在金融行业比较成熟的技术有NAS、SAN两种,而SAN又可分为FCSAN和IPSAN两种。
文件级数据存储。NAS设备最主要的应用就是银行企业或部门内部的文件共享。由于NAS本身就是一台服务器,有自己的操作系统和文件系统,可以直接与本地局域网连接,提供文件级的数据共享,但NAS设备无法成为服务器的本地硬盘,无法提供数据块的存储。NAS是在局域网中传输,且有自己的操作系统和文件系统,这些因素都会导致NAS设备的带宽降低,增加NAS设备的读写响应时间。由此来看,该存储方式对于分行或者小银行企业的信息管理还适用,要架构大数据安防还需要很多地方完善。
IPSAN存储架构。IPSAN中所采用iSCSI通信协议实际上是一个互联协议,是SAN结构的一种。通过将SCSI协议封装在IP包中,使得SCSI协议能够在LAN/WAN中进行传输。该种方案目前而言在是银行大数据监控集中存储应用的主流。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08