
大数据全面助力主动投资管理
随着互联网和基金理财业务的交叉融合,运用大数据进行投资的探索也在深入发展。近日,银华基金正在发行的银华大数据基金以“大数据择时”+“大数据选股”的投资特色备受市场关注。银华大数据拟任基金经理张凯表示,该基金有两大择时策略、四大选股策略,模拟运行的整体业绩乐观,体现了大数据应用于主动投资的比较优势。
两大择时策略降低系统风险
据了解,市场上已有的大数据基金多是被动指数型基金,通过高仓位被动跟踪一个大数据股票指数进而获取投资收益。
张凯认为,当前市场上的大数据指数基金多是在选股上运用大数据,但在择时上没有应用大数据,缺乏择时策略,而银华大数据基金是主动管理型基金,同时将大数据应用于选股策略和择时策略。
他说:“大数据基金如果不做择时,一直高仓位运行,尽管选股业绩优秀,但在发生系统性风险时仍将损失惨重。我们的新基金引入大数据择时策略后,就可以避免股市大幅调整时基金净值的大幅回撤。”
具体而言,张凯表示,银华大数据基金有两大类择时策略:第一类是基于宏观及行业景气度数据,包括货币供应量、流动性、经济同步指标、先导行业景气度等;第二类是基于市场行为及情绪数据,包括基金仓位、期指持仓及升水率、股票账户活跃度、分析师情绪等。
“基于宏观及行业景气度的数据对应的是中长周期的择时策略,基于市场行为及情绪的数据对应的是短周期的择时策略,两个策略影响权重各为50%,共同决定基金组合的仓位和大类资产配置,在择时上实现了长周期与短周期的均衡,提升了策略在不同市场波动下的稳定性。”他说,考虑到A股市场震荡多变,该基金将平均每月根据择时策略做出一次资产配置调整。
四大选股策略创造超额收益
大数据择时策略可以帮助规避系统性风险,而大数据选股策略则决定了基金的长期投资业绩。
据张凯介绍,该基金的选股策略分为四种,即股票关注热度策略、分析师荐股策略、财务多因子策略和公告事件驱动策略。这四种策略对应四类数据来源和四种投资逻辑,股票关注热度策略选择互联网关注度高的强势股票,卖方分析师推荐策略选择被最多优秀分析师推荐的股票,财务多因子策略选择基本面质地优良且低估最多的股票,公告事件驱动策略选择出现驱动股价走强的突发事件的股票。
张凯认为,在不同的市场环境和风格下,不同策略的短期表现可能各有不同,多数据源对应多策略的机制可以弥补单一策略的短期失效,并形成业绩互补,保证整体投资业绩的持续性和稳定性。此外,基于不同数据来源的策略相关性较低,更分散化的投资能够降低组合的整体风险。
谈及该基金数据源的特色,张凯特别提到卖方分析师数据:“我们的分析师荐股数据是公司独有的优势,公司搭建了分析师推荐股票自动化采集系统,我们会根据分析师荐股的长期业绩表现筛选出优秀分析师,并根据优秀分析师推荐的股票,自动构建股票组合,第一时间将分析师的研究价值转化为投资业绩。”
模拟运行年化收益可观
在张凯看来,相对于传统投资,大数据投资具备四大优势:一是股票覆盖面更广,利用大数据可以覆盖A股市场的所有股票;二是信息处理能力强,大数据投资能够分析基本面和非基本面的海量数据;三是投资策略更为多样化,大数据投资能够解决传统投资策略单一化和同质化的问题;四是避免人为主观性,大数据投资策略完全以数据为本,更为客观公正。
张凯介绍,该基金2010年就开始模拟运行,整体业绩可观。他说:“根据我们大数据基金之前的模拟运行,该基金的总体收益还是不错的,由于具备择时策略,2010年至今,年化收益可观,净值回撤较小,业绩长期稳定向上。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22