京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据分析:大数据小数据,有用的就是好数据
大数据到底有多大?
在 2001 年,道格 · 莱尼(Doug Laney)写下了一篇具有开创性意义的文章。在这篇文章中,莱尼描绘了一直困扰着他的客户的一个数据问题。莱尼的客户受困于体量(Volume)过于庞大的数据,这些数据正在以爆发式的速度(Velocity)增长,同时数据所呈现的形式也非常多样化(Variety)。莱尼的体量、速度和多样化理论得到了广泛认可,并被称为「大数据的三重奏」。
遗憾的是,许多人并没有抓住莱尼的重点。他在文章中所描述的是大数据所蕴含的问题,而不是优势。
想要收集大数据其实并不容易,而且收集和使用的成本往往非常高昂。与此同时,在一般情况下大数据和具体商业问题的关联度其实并不明显,遑论大数据往往不能满足品质标准的要求。况且在面对大数据时,管理数据所投入的资源并不能在分析、二次研究以及执行等环节中使用。由此看来,大数据对于许多人而言其实并不是一个祝福。相反,大数据有可能会严重摊薄企业在数据分析环节所需要的资源。
数据2
和其他问题相比,某些问题往往会显得更加重要,而某些问题则往往会显得更为复杂。但即便是在解决那些非常重要或复杂问题的时候,我们也不一定需要体量庞大的数据。
我最喜欢的例子之一是载人航天计划,你只需要考虑想要活着将人送到太空所需要的所有信息和计算,就不难理解这是一个多么复杂的问题。载人航天任务所涉及的数据包括:
宇航员的身体状况和医学信息
地理测量学(航天器的位置)和重力场
气象学,云层量和辐射平衡
大气物理学
磁场强度
宇宙射线和辐射捕获量
电磁辐射(紫外线、X 射线和伽玛射线
这份清单只是所需清单中的一小部分,但它所包含的信息量已经非常庞大。甚至连笔者本人也不清楚这些信息到底意味着什么,他只是从一份老旧的 NASA 文件中找到这份清单。(有谁知道行星际介质的测量方法吗?)
载人航天计划所需要的数据到底有多少?与之匹配的计算能力又该有多少?这两个问题的答案你能猜出来吗?
笔者曾有幸和「水星计划」(Mercury Project,美国第一个载人航天计划)的编程人员露西 · 西蒙 · 拉科夫(Lucy Simon Rakov)进行会谈,她向我描述了项目所使用的电脑。据拉科夫描述,尽管项目中的电脑性能非常强大,但内存却只有 300 千字节。你没有看错,不是「艾字节」,不是「拍字节」,也不是「兆字节」,而是「千字节」!
换而言之,只要你足够聪明,你就可以凭借内存极小的设备将航空器送上太空,要知道 300 千字节的内存甚至连存储一张大一点的图片也不够。由此看来,小小的空间其实也大有所为!
尽管如此,大数据有时会变得相当宝贵,与其价值相比,处理中的烦恼和成本甚至也变得不值一提。
大数据有什么好处?
大数据可以针对用户提供定制化的细节数据,有了这些数据,你可以作出更加明智的决策。实际上,有了大数据的帮助,你在顷刻间即可完成上千项决策。
如果说你可以一个接着一个地观察用户,你会更了解他们的习惯、喜好和需求。你会更了解如何和他们相处。只要数据的准确度和质量得当,大数据可以让你以定制化的方式与用户保持亲近,就像对待朋友一样。
你可以通过分析数据中的节为用户提供个性化服务,客户可以从你身上获得类似于亚马逊(Amazon)或者 Netflix 的针对性服务。更加显著的例子是在线婚恋网站的配对服务。
我需要大数据吗?
除非你已经可以在工作中善用日常更小级别的数据,否则大数据对你而言还言之过早。更重要的是,不论面对的是大数据还是小数据,最重要的是你可以善用数据,并将其转化成自己的强力武器。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01