
大数据时代的隐私:边界正变得暧昧不清
人们重视隐私的保护,但同时也相信未来是一个由数据推动的时代。不过,大数据使用的普及必然会涉及到侵犯隐私的问题,这听起来的确是相互矛盾的事情。
不可否认,大数据是座金矿,通过数据挖掘,人类所表现出的数据整合与控制力量远超以往。但大数据又是把双刃剑,国家和企业因大数据获益的同时,个人隐私保护的话题却变得暧昧不清,也使业内外对隐私保护的争论延绵不绝。
大数据打破宁静
说到个人隐私,有这样一个段子:一个客户打电话订购比萨,客服人员马上报出了他的电话和家庭住址,推荐了他喜欢的口味,报出他最近去图书馆借过什么书,信用卡已经被刷爆,了解他房贷还款金额,知道他丈母娘刚动过心脏搭桥手术,甚至还准确定位出他正在离比萨店20分钟路程的地方骑着一辆摩托车……
分散在各个系统中的海量数据乍一看价值不大,但如果把它们深入整合、挖掘,就能知道一名消费者的性格、爱好以及消费习惯等信息,这些信息对商家非常有价值。但对消费者来说,你的宁静生活却从此被打破。
数据如果是在相同业务范围内使用,没有必要去界定隐私;但业内人士也承认,在大数据交易过程中,用户的隐私存在泄露风险。一旦形成大数据模式,各个系统之间产生的数据就会互联互通,数据被用于他途,用户隐私泄露的可能性就会加大。
直接过滤掉个人信息,是否就能防止信息泄露?有业内人士认为,大数据在涉及交换、分析、挖掘时,个人信息是无法直接过滤的。
此外,不同商家的所谓信息共享也会让你的隐私信息有被整合、挖掘的“危险”。这些个人隐私数据散落在中介、银行、保险、航空公司等机构间,危险性可能不大,但如果被共享之后,又被系统整合、相互印证的话,消费者的个人基本信息,甚至性格、爱好以及生活轨迹等信息将被他人一览无余,很多普通人在他们面前将变成“透明人”。
隐私保护应跟上步伐
大数据系统与传统数据系统不同,区别在于,前者包含了很多外源性数据,这些数据本身存在价值。比如你在淘宝购物创造了一个数据,这个数据对于淘宝而言就是外源性的。当无数外源性的数据整合并被分析之后,便构成了大数据系统。一旦形成大数据模式,各个系统之间产生的数据就会互联互通,从而产生极大价值。因此,传统数据时代的“隐私”与大数据语境下的“隐私”,无论是内涵还是外延,均有极大不同。
一般而言,人们对于隐私的定义是:一种与公共利益、群体利益无关,当事人不愿他人知道或他人不便知道的个人信息。其本身并不涉及公共、群体利益。业界有一种声音认为,随着大数据时代的深入,这个社会对隐私的定义一定会逐渐改变,考虑到技术的发展,眼下认为是隐私的信息,或许几年后就不再敏感。
在监管层面,由于现阶段《民法通则》没有完整的关于“隐私”的概念,国家也无明文规定来规范大数据交易市场,诸如云计算和大数据应用都或多或少在灰色地带游走。
上海杜跃平律师事务所律师杜跃平向《每日经济新闻》记者表示,可以从源头上抓起,即默认禁止状态,未列举的内容默认为不被允许。
美国目前仍在使用的是1970年就通过的《公平信用报告法》(TheFairCreditReportingAct),旨在对大型主机侵犯人们的隐私进行防护。该法案允许信用咨询公司收集个人财务信息,但收集所得信息只能用在三个方面:信用、保险以及就业。
很显然,美国的法律在大数据时代滞后了。我国关于个人隐私的保护,也未跟上大数据技术的发展步伐。
杜跃平指出,许多网站和电子商务平台对用户进行行为习惯分析,然后推送相关商品信息,这本身已涉嫌侵犯用户隐私。解决办法是,网站必须尽告知义务,“网站在采集信息前应告知和征询消费者,消费有权授权或不授权。”即使在授权之后,电商平台也不能将消费者行为信息用于商业用途。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29