京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的隐私:边界正变得暧昧不清
人们重视隐私的保护,但同时也相信未来是一个由数据推动的时代。不过,大数据使用的普及必然会涉及到侵犯隐私的问题,这听起来的确是相互矛盾的事情。
不可否认,大数据是座金矿,通过数据挖掘,人类所表现出的数据整合与控制力量远超以往。但大数据又是把双刃剑,国家和企业因大数据获益的同时,个人隐私保护的话题却变得暧昧不清,也使业内外对隐私保护的争论延绵不绝。
大数据打破宁静
说到个人隐私,有这样一个段子:一个客户打电话订购比萨,客服人员马上报出了他的电话和家庭住址,推荐了他喜欢的口味,报出他最近去图书馆借过什么书,信用卡已经被刷爆,了解他房贷还款金额,知道他丈母娘刚动过心脏搭桥手术,甚至还准确定位出他正在离比萨店20分钟路程的地方骑着一辆摩托车……
分散在各个系统中的海量数据乍一看价值不大,但如果把它们深入整合、挖掘,就能知道一名消费者的性格、爱好以及消费习惯等信息,这些信息对商家非常有价值。但对消费者来说,你的宁静生活却从此被打破。
数据如果是在相同业务范围内使用,没有必要去界定隐私;但业内人士也承认,在大数据交易过程中,用户的隐私存在泄露风险。一旦形成大数据模式,各个系统之间产生的数据就会互联互通,数据被用于他途,用户隐私泄露的可能性就会加大。
直接过滤掉个人信息,是否就能防止信息泄露?有业内人士认为,大数据在涉及交换、分析、挖掘时,个人信息是无法直接过滤的。
此外,不同商家的所谓信息共享也会让你的隐私信息有被整合、挖掘的“危险”。这些个人隐私数据散落在中介、银行、保险、航空公司等机构间,危险性可能不大,但如果被共享之后,又被系统整合、相互印证的话,消费者的个人基本信息,甚至性格、爱好以及生活轨迹等信息将被他人一览无余,很多普通人在他们面前将变成“透明人”。
隐私保护应跟上步伐
大数据系统与传统数据系统不同,区别在于,前者包含了很多外源性数据,这些数据本身存在价值。比如你在淘宝购物创造了一个数据,这个数据对于淘宝而言就是外源性的。当无数外源性的数据整合并被分析之后,便构成了大数据系统。一旦形成大数据模式,各个系统之间产生的数据就会互联互通,从而产生极大价值。因此,传统数据时代的“隐私”与大数据语境下的“隐私”,无论是内涵还是外延,均有极大不同。
一般而言,人们对于隐私的定义是:一种与公共利益、群体利益无关,当事人不愿他人知道或他人不便知道的个人信息。其本身并不涉及公共、群体利益。业界有一种声音认为,随着大数据时代的深入,这个社会对隐私的定义一定会逐渐改变,考虑到技术的发展,眼下认为是隐私的信息,或许几年后就不再敏感。
在监管层面,由于现阶段《民法通则》没有完整的关于“隐私”的概念,国家也无明文规定来规范大数据交易市场,诸如云计算和大数据应用都或多或少在灰色地带游走。
上海杜跃平律师事务所律师杜跃平向《每日经济新闻》记者表示,可以从源头上抓起,即默认禁止状态,未列举的内容默认为不被允许。
美国目前仍在使用的是1970年就通过的《公平信用报告法》(TheFairCreditReportingAct),旨在对大型主机侵犯人们的隐私进行防护。该法案允许信用咨询公司收集个人财务信息,但收集所得信息只能用在三个方面:信用、保险以及就业。
很显然,美国的法律在大数据时代滞后了。我国关于个人隐私的保护,也未跟上大数据技术的发展步伐。
杜跃平指出,许多网站和电子商务平台对用户进行行为习惯分析,然后推送相关商品信息,这本身已涉嫌侵犯用户隐私。解决办法是,网站必须尽告知义务,“网站在采集信息前应告知和征询消费者,消费有权授权或不授权。”即使在授权之后,电商平台也不能将消费者行为信息用于商业用途。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13