京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据创新信息化测评方法
目前信息化评测方法基本上是从传统的统计方法延续过来的,其数据主要来自两个方面:各地区政府管理部门上报数据和有关部门的抽样调查。但是,这两种数据来源对于评价地区信息化水平来说,都存在一定的问题。
政府部门提供的数据容易偏重于建设方面,如信息化建设投资了多少、铺设了多少皮长公里光纤、建设了多少数据库、存储了多少数据资源等等,这些数据只能反映政府在信息化建设上做了多少工作,而不能反映信息化的应用效果;利用抽样调查取得的数据也有问题,原因在于样本很难随机抽样、问卷设计难以规范、用户回答的随意性太大,满意度很难作为客观的评价指标。
同时,在评测信息化水平的指标选择上也存在一些问题:指标陈旧、更新不及时、跟不上信息技术环境的变化等。例如移动互联网、电子商务、云计算、物联网等应用很难纳入统计。
总之,传统的统计方式适合于纵向历史数据比较,很难适应以横向比较为主的快速变化的信息化形势。为了能够相对客观地比较各地区信息化发展水平,应当尽量使用一些计算机产生的数据,减少人为随意性带来的不确定性。因此,对于信息化的评测,需要另辟蹊径。
利用大数据方法获取数据
应当看到,地区的信息化水平并不等于信息化建设投资的规模,也不等于信息系统能够提供的功能。城市的信息化水平主要是指信息化应用的普及率、应用深度及应用效益水平。信息化应用水平,尤其是应用效益是不可控的,政府可以建设许多项目,但公众是否愿意使用则是另一回事。应用普及是公众的自主选择的结果,一项对公众帮助不大的服务,用户肯定门可罗雀,用户规模更能反映信息化建设的效果。城市信息化水平的调查重点应当是应用规模。注重最终用户效益的统计调查,有利于管理者重视整体效益,重视各方面环境的配套,也有益于智慧的城市建设。
为提高数据获取的效率、增加数据的客观性,我们应当充分利用大数据的方法对传统方法进行改进。信息技术普及到今天,很多应用数据都能够通过自动化的渠道来获取,需要选择的指标不需要太多,多则惑,少则得。GDP之所以受到人们的关注,最重要的原因就是简单。因此,信息化的评测数据也要力求简单,便于普及与推广,只要能够说明问题,指标数目少一些更好。
大数据可以有以下几个来源:搜索网站(如百度)、信用卡公司(如银联)、电子商务公司(如阿里巴巴)、运营商(三大运营商均可)以及可提供政府网站点击率、市民卡使用率的机构。这些企业与机构提供的数据都是由计算机自动生成的,没有人为干预,数据规范而客观,对于评价地区信息化发展水平是很好的参考资料。
五大参数反映信息化水平
从数据获取的难易性和客观真实性出发考虑,笔者建议利用五大“利用率”指标来评测一个地方的信息化发展水平,这5个利用率分别是信息资源利用率、智能设施利用率、通信设施利用率、政府网站利用率和电子商务利用率。
信息资源利用率:主要数据来源是百度的搜索引擎,可以方便地统计出全国每一地区的搜索量,得出各地区网民的平均信息资源的利用能力,内容可进一步分为信息类、娱乐类、电子商务类。
智能设施利用率:包括银行卡刷卡量、市民卡刷卡量、交通卡刷卡量。这三类数据都较容易获取,人均智能卡使用率能够比较准确地反映城市智能设施的应用效果。
通信设施利用率:主要是地区通信数量,包括3G通信的比例,人均通信量越高的城市,信息化水平越高。通信量还包括城市进出人口的通信统计,可以反映城市人口的流动率,人口流动率也是反映城市信息化水平的重要数据。
政府网站利用率:政府网站点击率能够反映政府电子政务被使用的效果,电子政务网站向城市居民渗透率是评价电子政务效果的重要指标,这个数据并不难得到,分析这些数据对电子政务改进很有价值。
电子商务利用率:电子商务利用率也是评价一个地区信息化水平的重要指标,该数据可以向阿里巴巴订购,可以比较一个城市的电子商务普及率、物流覆盖率、居民消费能力,电子商务统计数据对于比较各地信息化水平十分重要。
上述数据除以地区人口数,即得到相应的信息化参数值。这些数据都是来自计算机的自动统计,在通过数据分析师的进一步整理,因而有着更好的客观性。如果有机构能够将这些数据组织为完整的系统向全国发布,对于各地政府的智慧城市建设会有很大帮助;而承担这项工作的机构有无行政权力并不重要,重要的是创意与合作能力,政府、民间都可以做,或许民间机构会做得更好。
将各地区信息化数据加工成为一个指数来进行信息化统一排名的必要性不是很大,因为各地区环境差异太大。但是,分类的排序却很有好处,有助于各地区看到具体的差距,以便于改进。将这五个参数用雷达图表达会更加直观,从雷达图上可以看出本地区信息化发展的薄弱环节,有助于地方政府改进工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31