
大数据创新信息化测评方法
目前信息化评测方法基本上是从传统的统计方法延续过来的,其数据主要来自两个方面:各地区政府管理部门上报数据和有关部门的抽样调查。但是,这两种数据来源对于评价地区信息化水平来说,都存在一定的问题。
政府部门提供的数据容易偏重于建设方面,如信息化建设投资了多少、铺设了多少皮长公里光纤、建设了多少数据库、存储了多少数据资源等等,这些数据只能反映政府在信息化建设上做了多少工作,而不能反映信息化的应用效果;利用抽样调查取得的数据也有问题,原因在于样本很难随机抽样、问卷设计难以规范、用户回答的随意性太大,满意度很难作为客观的评价指标。
同时,在评测信息化水平的指标选择上也存在一些问题:指标陈旧、更新不及时、跟不上信息技术环境的变化等。例如移动互联网、电子商务、云计算、物联网等应用很难纳入统计。
总之,传统的统计方式适合于纵向历史数据比较,很难适应以横向比较为主的快速变化的信息化形势。为了能够相对客观地比较各地区信息化发展水平,应当尽量使用一些计算机产生的数据,减少人为随意性带来的不确定性。因此,对于信息化的评测,需要另辟蹊径。
利用大数据方法获取数据
应当看到,地区的信息化水平并不等于信息化建设投资的规模,也不等于信息系统能够提供的功能。城市的信息化水平主要是指信息化应用的普及率、应用深度及应用效益水平。信息化应用水平,尤其是应用效益是不可控的,政府可以建设许多项目,但公众是否愿意使用则是另一回事。应用普及是公众的自主选择的结果,一项对公众帮助不大的服务,用户肯定门可罗雀,用户规模更能反映信息化建设的效果。城市信息化水平的调查重点应当是应用规模。注重最终用户效益的统计调查,有利于管理者重视整体效益,重视各方面环境的配套,也有益于智慧的城市建设。
为提高数据获取的效率、增加数据的客观性,我们应当充分利用大数据的方法对传统方法进行改进。信息技术普及到今天,很多应用数据都能够通过自动化的渠道来获取,需要选择的指标不需要太多,多则惑,少则得。GDP之所以受到人们的关注,最重要的原因就是简单。因此,信息化的评测数据也要力求简单,便于普及与推广,只要能够说明问题,指标数目少一些更好。
大数据可以有以下几个来源:搜索网站(如百度)、信用卡公司(如银联)、电子商务公司(如阿里巴巴)、运营商(三大运营商均可)以及可提供政府网站点击率、市民卡使用率的机构。这些企业与机构提供的数据都是由计算机自动生成的,没有人为干预,数据规范而客观,对于评价地区信息化发展水平是很好的参考资料。
五大参数反映信息化水平
从数据获取的难易性和客观真实性出发考虑,笔者建议利用五大“利用率”指标来评测一个地方的信息化发展水平,这5个利用率分别是信息资源利用率、智能设施利用率、通信设施利用率、政府网站利用率和电子商务利用率。
信息资源利用率:主要数据来源是百度的搜索引擎,可以方便地统计出全国每一地区的搜索量,得出各地区网民的平均信息资源的利用能力,内容可进一步分为信息类、娱乐类、电子商务类。
智能设施利用率:包括银行卡刷卡量、市民卡刷卡量、交通卡刷卡量。这三类数据都较容易获取,人均智能卡使用率能够比较准确地反映城市智能设施的应用效果。
通信设施利用率:主要是地区通信数量,包括3G通信的比例,人均通信量越高的城市,信息化水平越高。通信量还包括城市进出人口的通信统计,可以反映城市人口的流动率,人口流动率也是反映城市信息化水平的重要数据。
政府网站利用率:政府网站点击率能够反映政府电子政务被使用的效果,电子政务网站向城市居民渗透率是评价电子政务效果的重要指标,这个数据并不难得到,分析这些数据对电子政务改进很有价值。
电子商务利用率:电子商务利用率也是评价一个地区信息化水平的重要指标,该数据可以向阿里巴巴订购,可以比较一个城市的电子商务普及率、物流覆盖率、居民消费能力,电子商务统计数据对于比较各地信息化水平十分重要。
上述数据除以地区人口数,即得到相应的信息化参数值。这些数据都是来自计算机的自动统计,在通过数据分析师的进一步整理,因而有着更好的客观性。如果有机构能够将这些数据组织为完整的系统向全国发布,对于各地政府的智慧城市建设会有很大帮助;而承担这项工作的机构有无行政权力并不重要,重要的是创意与合作能力,政府、民间都可以做,或许民间机构会做得更好。
将各地区信息化数据加工成为一个指数来进行信息化统一排名的必要性不是很大,因为各地区环境差异太大。但是,分类的排序却很有好处,有助于各地区看到具体的差距,以便于改进。将这五个参数用雷达图表达会更加直观,从雷达图上可以看出本地区信息化发展的薄弱环节,有助于地方政府改进工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16