
大数据、云计算是否将点燃人工智能?
人工智能(AI)是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年,人工智能学科被正式提出,50多年来已取得较为长足的发展,成为一门广泛的交叉和前沿科学。人工智能虽已发展多年,指纹识别、机器翻译、图像理解等等,但似乎并未给人们生活带来太多本质性变化。随着大数据与云计算的普及,与二者息息相关的人工智能是否会被点燃,它会受到什么样的影响呢?
你真的理解人工智能了吗?
当提到人工智能,网友1983yu表示,他能够想到的是机器视觉、指纹识别、人脸识别、视网膜识别、掌纹识别、专家系统、自动规划、智能搜索、定理证明、博弈、自动程序设计、智能控制、机器人学、语言和图像理解,遗传编程等,他认为这些都应是人工智能。比较著名的也就是Siri之类的,而突破性的进展估计还要继续等待,现在都是初级的应用罢了。而对于人工智能的深层含义,他讲道:“人工智能是对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。”
网友何冰分析道:“人工智慧从字面上看就是人造的智慧,但是实际上涵盖了不少部分,大家最关心的实际上是人工自主意识,因为网络和电脑已经完成了知识的检索和存储,几大搜索引擎也完成了关键字-关联解释的功能和海量数据积累,而且大多数机器人厂商已经完成了反应机,自适应等等高级功能,但是人类对自身意识的研究并没有上升到更透彻的层面。”
网友百得对于人工智能的解读十分干练诙谐,他认为:“带有条件判断的逻辑行为就是智能;人类采用非自然方法实现智能就是智能机;可以安全重组的连续逻辑过程就是意识;人类采用非自然方法实现意识就是人工智能。”
人工智能与大数据和云计算的关系
网友1983yu指出,人工智能目前其实还是处于初级阶段,它与大数据和云计算的关系很暧昧,发展前期,人工智能靠它们来定位,所以关系较为密切。而若考虑智能方面,则应该是自动学习能力最为重要,自己存储数据,进化到自我学习的手段来实现人工智能。
网友smilefish从生活角度谈到:“人的智能模拟,简单的如指纹识别,面部识别和视网膜识别等。需要借助大数据来实现某些功能和应用。”
小编认为,网友zhihuyonghu分析的有条有理,较为中肯:“人工智能的确在近年来遇到了极好的发展机遇,互联网、移动互联网的普及让人类的数据触手可及,计算技术的快速发展让机器快速处理海量数据变成了现实,‘大数据+大计算’让神经网络以深度学习的名号重出江湖。但是这并不能说人工智能在核心技术上就有多大的突破。”
人工智能的未来会如何?
“未来会对人类社会产生巨大影响,在很大程度上会促进人类社会的发展。”网友1983yu附和道:“以后各行各业应该都会用到人工智能,特别是在精密行业,不说以后顶半边天,一半一半也应该有吧。虽然很多人认为人工智能将会是人类的威胁,但是目前考虑这么多没有用,先发展再说。”
人工智能应以人为本,为便利而生,它必须对人类产生作用。但网友网友钟宇尧却不这么认为,他说:“最高级的人工智能将是一种更高级的生命形式。必将继承人类智能,成为生命进化的下一个阶段。这种生命,拥有远超人类更高速的发展能力,必然取代人类。”
有人工智能行业背景,他对此分析道:“其实,现有的人工智能技术在本质上还是按照人类设计的固定算法来思考,依然是一种机械地执行人类智能而已。所谓的机器学习,它只是人类利用机器的计算能力来学习而已,其主语是人类,而非机器。真正的机器智能应当拥有自己独立的学习能力,但这在很长一段时间内应该是人类的保留技能了,因为人脑显然要神奇奥妙得多。人工智能的未来,要极大地依赖于生命科学的发展,我们需要像造物主学习的还有很多很多。”
其实,在很多科幻片中出现的人工智能畅想物很多已经不仅存于人们的幻想中,在大数据与云计算相关技术有了很大发展的今天,能够支撑人们将理想变为现实的能力已然足够。然而对于前景的判断却不能仅从科技角度出发,商业价值才是落地的根本。计算机的性能发展至今,常规的应用已经足够,那么新的增长点是否会落在人工智能也未可知。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08