京公网安备 11010802034615号
经营许可证编号:京B2-20210330
云计算大数据潮起 运营商不进则退
2015年是云计算和大数据的“政策大年”。从年初开始,各种政策利好频频到来,发展云计算和大数据已经上升到国家战略层面。借助政策“春风”,云计算和大数据产业蓬勃发展,市场规模不断扩大,产业生态正在形成,越来越多的传统行业开始拥抱云计算和大数据,电信运营商面临新的机遇和挑战。
政策利好频出
鉴于云计算和大数据在新一轮产业革命中发挥的重要作用,越来越多的国家将发展云计算和大数据上升为国家战略。2015年上半年,我国相继发布了多个有关云计算和大数据的重磅政策,密度和力度之大前所未见。
1月,国务院印发了《关于促进云计算创新发展 培育信息产业新业态的意见》,明确提出了云计算发展的原则、目标、任务和措施。这被认为是一份影响我国云计算、信息产业乃至信息化长远发展的重要政策文件。根据规划,到2020年,云计算将成为我国信息化重要形态和建设网络强国的重要支撑,云计算应用基本普及,云计算服务能力达到国际先进水平,并掌握云计算关键技术,形成若干具有较强国际竞争力的云计算骨干企业。
3月5日,李克强总理在政府工作报告中首次提出“互联网+”行动计划,强调要推动移动互联网、云计算、大数据、物联网等与现代制造业结合,促进电子商务、工业互联网和互联网金融健康发展,引导互联网企业拓展国际市场。而不到4个月的时间,7月1日国务院发布了《关于积极推进“互联网+”行动的指导意见》,“云计算”和“大数据”成为重要内容,在文件中多次出现。
6月17日,国务院总理李克强主持召开国务院常务会议,部署加大重点领域有效投资,发挥稳增长调结构惠民生的多重作用。会议特别强调,运用大数据等现代信息技术是促进政府职能转变、简政放权、放管结合、优化服务的有效手段,在环保、食品药品安全等重点领域引入大数据监管,用政务“云”提升政府服务和监管效率、造福广大群众。
8月19日,国务院常务会议通过《关于促进大数据发展的行动纲要》,会议认为,开发应用好大数据这一基础性战略资源,有利于推动大众创业、万众创新,改造升级传统产业,培育经济发展新引擎和国际竞争新优势。会议强调,要推动政府信息系统和公共数据互联共享,消除信息孤岛;要顺应潮流,引导支持大数据产业发展,深化大数据在各行业的创新应用,催生新业态、新模式,形成与需求紧密结合的大数据产品体系,使开放的大数据成为促进创业创新的新动力;要强化信息安全保障,完善产业标准体系,依法依规打击数据滥用、侵犯隐私等行为。
今年以来,短短几个月间,重量级政策密集出台,让ICT产业乃至整个社会都看到了云计算和大数据的发展前景。在政策“东风”的推动下,我国的云计算产业蓬勃发展,市场规模不断扩大。据中国信息通信研究院统计显示,2014年,我国公共云服务市场规模达到70亿元左右,增速达到47.5%,高于全球同期18%的增速,预计2015年市场规模将突破100亿元;2014年中国专有云市场规模约为216.8亿元,年增长率达到28.6%,预计市场规模将达275亿元左右。与此同时,云计算产业的生态体系正在形成,核心技术能力显著增强,与发达国家的差距日渐缩小。尤为值得一提的是,越来越多的行业开始拥抱云计算和大数据,云计算和大数据正在推动整个社会的创新,助力更多行业实现转型升级。
运营商还需“深度拥抱”
云计算和大数据正在打破传统IT架构,给各行各业带来新的机遇。对于电信运营商、互联网企业、IT厂商以及初创企业而言,云计算和大数据都意味着机遇,甚至是决定企业未来的不二法宝。
在我国云计算市场,电信运营商是不容忽视的重要力量。这主要得益于运营商进入市场时间较早,且拥有一些天然的优势:一是广泛的网络覆盖,二是高速的宽带接入能力,三是多年积累的渠道资源,四是品牌影响力以及丰富的客户服务经验。相比较互联网企业,电信运营商更能为企业以及行业用户提供个性化且具备电信级服务质量的云计算解决方案。不过,鉴于云计算市场的战略意义,越来越多的公司开始加大云计算市场的投入力度,一些互联网公司甚至制造商已经开始建设自有数据中心,发展公有云,直接面对用户。这对运营商形成有力挑战,运营商还需要深度拥抱云计算,这不仅意味着在云计算市场占据优势地位,同时也是为自身的转型发展提供强力支撑。
相比云计算,电信运营商在大数据市场的优势就不够明显。 作为大数据的传送者、生产者和使用者,目前电信运营商对于大数据的挖掘、开发、利用还远远不够。虽然拥有海量的数据资源,但是缺乏统一规划,数据分散且不完整,未能得到有效整合。即使一些公司开始分析利用大数据也主要集中在自身的内部优化上,偶尔出现的外部合作也不成规模,尚未找到理想的变现之道。原信息产业部部长吴基传曾公开呼吁:“运营商明明坐拥一座金矿,却都被BAT挖走了,要转变思路,一些不适应时代的规章制度,该打破的就要打破。”
“大数据已经成为新时代最具价值的宝藏之一,在某种程度上说,谁拥有了大数据谁就拥有了未来。”国务院副总理马凯在贵阳国际大数据产业博览会上强调了大数据的重要性。云计算和大数据代表了先进生产力,无论是国家、企业、个人都不能错过时代赋予的难得机遇,坐拥网络和用户资源优势的电信运营商更是要抢抓机遇,乘势而上,掌握发展的主动权。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26