
2016年等待云和大数据会是什么?
2016年,最大的技术趋势仍会是云,大数据和物联网(IoT)。云计算将会继续改变企业前景,而消费类技术将会受到大数据和IoT技术的干扰。最新的证明便是余热未退的2016CES展会,由于Uber,Telsa以及其它新的发明创新,车辆配置了各色新型技术。
云计算持续干扰公司商业模式
许多决策者认为自己想知道的不过是要将它们的云发明放在哪里。但Wikibon与北桥创投和超过30位技术领导者协力抽调了约1000名用户得出的调查结论揭示了一些趋势并深入了解云计算,同时就未来发展给了我们一个很好的思路。
首先,IT企业对于私有云战略明显乏人问津的同时,混合云与公有云部署热度激增,这主要基于业务对灵活性不断提高的需求。混合云现在是云市场的主导,而私有云的采用率几乎滑了一半。
随着前景的改变,企业正在尝试寻找将自身服务提升一个更高等级的方式,这也凸显在层出不穷的云技术如PaaS(平台即服务),SDN(软件定义网络)和DBaaS(数据库即服务)上。
然而几乎所有的迹象都指向SaaS(软件即服务),撇下本地解决方案自生自灭,而最明显的标志体现在花销上。风投公司相比其它的投资,在SaaS方面更多,基础设施花销正在直接针对公有云服务和OPEX花销。
尽管云服务战绩彪悍,但安全性与法规遵从性/监管的顾虑对公有云采用始终是最大的一块绊脚石,企业也因为隐私和性能问题而对冒险尝试云计算有所保留。
与此同时,驱动云使用的因素也已经改变。可扩展性已经成为首要驱动因素,而灵活性则以第二位自居。另外与云计算相关联的成本和创新也是重要的驱动因素,不过与前者相比而言有些黯然。
云计算正在不断开疆辟土,IoT就是证明。随着汽车公司利用云应用程序来改善驾驶体验与维护,车辆正在开始采取行动。就连住房也通过云计算安装一些控制装置,允许用户远程关灯或关闭车库。
那么IT供应商会如何被这些改变所影响?用户已经开始直面云供应商,打乱了中间商的普遍链条。云提供商也正在学习更多关于消费的应用,使它们能够更好的调整自身服务和价格。然而这就意味着经销商,科技公司和增值供应商必须要寻找吸引用户的新方式,以免它们完全被甩脱出购买过程。无论是通过培训,应用程序或其它手段,它们需要提供附加价值来使客户通过它们来购买产品。
由此可以得出,除了混合云和公有云的兴起,我们还可以期待更多使用中的云技术“变奏曲”,还有云以计算机和移动设备以外的原始方式进行部署。无论如何,供应商都要适应这个善变的市场,而那些能够提供更多价值的厂商必定会比那些无法跟上时代脚步的厂商走得更远。
汽车科技——消费者的最大可穿戴智能型手机
世界通过技术连接越来越紧密,各行各业都在试图跟上国际步伐。可是没有哪个行业比汽车行业的数字化转型更为明显——现在对于一辆车而言,仅能从A点到B点保持良好车速还不够,现在标准车型都自带蓝牙手机连接,固定GPS以及一系列其它附加功能来改善驾驶体验。
汽车体验转变多亏了物联网。比方说,使用云,汽车公司能够提供诊断和报告功能,如果车坏了,它的计算机能够分析问题并向车主报告;多辆汽车的数据能帮助确定那些可被预测和修复的重复问题,将它们的汽车转变为本质上的智能型手机。比如雪佛兰,甚至开始在它的车辆上安装固定OnStar 4G LTE Wi-Fi热点,让乘客将他们的智能设备和车辆连接到互联网。
另一种方案是利用数据中心,较少的一种自动化,永久连接的方法,但能够提供更广泛的数据与信息阵列。
而车载娱乐的后座辅助电缆和DVD播放机也已经成为过去式,智能型手机能够自动同步汽车的收音机播放音乐并允许驾驶员在行驶中进行免提通话,这些附加功能正在把汽车变成一个巨大的可行驶智能型手机。
但随着技术的发展,一些规则改变者和扰乱项开始发挥作用。正如消费设备改变企业的工作方式一般,相同的消费化正发生在汽车行业。一大波新型车辆如谷歌的无人驾驶车和Tesla的全电式车辆都在路上,移动应用程序如Uber的一键搭车为客户提供新的选择。
不过新的汽车公司依旧和其它车辆一样受到相同的规则限制,无人驾驶车仍旧是一辆车,必须作为一辆汽车进行构造和销售,另外,该技术是新型或并不完备的,并不完全符合成本效益。出租公司也已经感受到了来自Uber的压力,汽车公司为了变得比使用一个应用程序向陌生人搭便车更具吸引力,正在尝试改善它们的车辆。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22