
2016年等待云和大数据会是什么?
2016年,最大的技术趋势仍会是云,大数据和物联网(IoT)。云计算将会继续改变企业前景,而消费类技术将会受到大数据和IoT技术的干扰。最新的证明便是余热未退的2016CES展会,由于Uber,Telsa以及其它新的发明创新,车辆配置了各色新型技术。
云计算持续干扰公司商业模式
许多决策者认为自己想知道的不过是要将它们的云发明放在哪里。但Wikibon与北桥创投和超过30位技术领导者协力抽调了约1000名用户得出的调查结论揭示了一些趋势并深入了解云计算,同时就未来发展给了我们一个很好的思路。
首先,IT企业对于私有云战略明显乏人问津的同时,混合云与公有云部署热度激增,这主要基于业务对灵活性不断提高的需求。混合云现在是云市场的主导,而私有云的采用率几乎滑了一半。
随着前景的改变,企业正在尝试寻找将自身服务提升一个更高等级的方式,这也凸显在层出不穷的云技术如PaaS(平台即服务),SDN(软件定义网络)和DBaaS(数据库即服务)上。
然而几乎所有的迹象都指向SaaS(软件即服务),撇下本地解决方案自生自灭,而最明显的标志体现在花销上。风投公司相比其它的投资,在SaaS方面更多,基础设施花销正在直接针对公有云服务和OPEX花销。
尽管云服务战绩彪悍,但安全性与法规遵从性/监管的顾虑对公有云采用始终是最大的一块绊脚石,企业也因为隐私和性能问题而对冒险尝试云计算有所保留。
与此同时,驱动云使用的因素也已经改变。可扩展性已经成为首要驱动因素,而灵活性则以第二位自居。另外与云计算相关联的成本和创新也是重要的驱动因素,不过与前者相比而言有些黯然。
云计算正在不断开疆辟土,IoT就是证明。随着汽车公司利用云应用程序来改善驾驶体验与维护,车辆正在开始采取行动。就连住房也通过云计算安装一些控制装置,允许用户远程关灯或关闭车库。
那么IT供应商会如何被这些改变所影响?用户已经开始直面云供应商,打乱了中间商的普遍链条。云提供商也正在学习更多关于消费的应用,使它们能够更好的调整自身服务和价格。然而这就意味着经销商,科技公司和增值供应商必须要寻找吸引用户的新方式,以免它们完全被甩脱出购买过程。无论是通过培训,应用程序或其它手段,它们需要提供附加价值来使客户通过它们来购买产品。
由此可以得出,除了混合云和公有云的兴起,我们还可以期待更多使用中的云技术“变奏曲”,还有云以计算机和移动设备以外的原始方式进行部署。无论如何,供应商都要适应这个善变的市场,而那些能够提供更多价值的厂商必定会比那些无法跟上时代脚步的厂商走得更远。
汽车科技——消费者的最大可穿戴智能型手机
世界通过技术连接越来越紧密,各行各业都在试图跟上国际步伐。可是没有哪个行业比汽车行业的数字化转型更为明显——现在对于一辆车而言,仅能从A点到B点保持良好车速还不够,现在标准车型都自带蓝牙手机连接,固定GPS以及一系列其它附加功能来改善驾驶体验。
汽车体验转变多亏了物联网。比方说,使用云,汽车公司能够提供诊断和报告功能,如果车坏了,它的计算机能够分析问题并向车主报告;多辆汽车的数据能帮助确定那些可被预测和修复的重复问题,将它们的汽车转变为本质上的智能型手机。比如雪佛兰,甚至开始在它的车辆上安装固定OnStar 4G LTE Wi-Fi热点,让乘客将他们的智能设备和车辆连接到互联网。
另一种方案是利用数据中心,较少的一种自动化,永久连接的方法,但能够提供更广泛的数据与信息阵列。
而车载娱乐的后座辅助电缆和DVD播放机也已经成为过去式,智能型手机能够自动同步汽车的收音机播放音乐并允许驾驶员在行驶中进行免提通话,这些附加功能正在把汽车变成一个巨大的可行驶智能型手机。
但随着技术的发展,一些规则改变者和扰乱项开始发挥作用。正如消费设备改变企业的工作方式一般,相同的消费化正发生在汽车行业。一大波新型车辆如谷歌的无人驾驶车和Tesla的全电式车辆都在路上,移动应用程序如Uber的一键搭车为客户提供新的选择。
不过新的汽车公司依旧和其它车辆一样受到相同的规则限制,无人驾驶车仍旧是一辆车,必须作为一辆汽车进行构造和销售,另外,该技术是新型或并不完备的,并不完全符合成本效益。出租公司也已经感受到了来自Uber的压力,汽车公司为了变得比使用一个应用程序向陌生人搭便车更具吸引力,正在尝试改善它们的车辆。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30