京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代飞鸽振翅高飞
提起天津飞鸽自行车,许多人首先想到的大概就是新中国第一辆国产自行车、外交用国礼、还有儿时的回忆。如果说这些美誉代表着曾经的飞鸽,那么今年异常火爆的超级自行车则是这个传统企业在“互联网+”时代发出的新声音。
2015年8月份,飞鸽和乐视发布了他们合作研发的超级自行车,这款智能产品是互联网科技生态与传统行业互相融合的产物。新车发布的第二天,首批100辆现车通过互联网销售终端,仅用1秒钟就被抢购一空。而在2015年“双十一”期间,1111辆现车只用8分钟就宣告售罄。超级自行车的问世已经不仅仅是为了满足人们的出行需要,它营造的是一种健康、智能、时尚的生活方式。
在天津飞鸽车业发展有限公司研发中心总监李长松看来,传统自行车企业在产品上引入互联网元素,无论是在销售模式,还是经营环境方面,都大有好处。“我们的智能自行车在国内算是第一代了,影响力也很大。我们不否认在产品方面存在一些不完善之处,这也是我们今后要做改善的地方。但无论是线上的销售数据,还是线下实体店的参与热度,我们能感受到消费人群对超级自行车还是比较期待和认可的。”李长松说。
互联网对于产品实际生产有什么样的意义?李长松举了一个真实的例子:“我们之前给超级自行车配备了一个8000毫安的电池组,当时设定的待机时间是一周,如果是骑行(所有设备打开情况下)状态下可以超过6小时。但是后来消费者反馈的结果是,在骑行状态下,待机时间远远达不到,仅能持续4小时。得到反馈信息后,我们及时对软件系统进行了优化,对电池组运行模式进行改变。我们克服先前中控关机方式复杂的缺陷,改为通过头机关闭中控的模式节省电量,这样一个发出产品-收回反馈-进行改善的过程只用了1个月。之后,用户只要通过互联网进行升级,优化后的系统就能及时替换到他们的产品上。”
“对于超级自行车来说,投放市场后的反馈其实是很重要的。现在,我们获得这些反馈的信息和以前是完全不一样的,无论是信息反馈数量还是反馈速度都因为互联网而变得高效。”李长松说,“如果我们走传统路线,通过销售-发问卷-客户反馈-经销商反馈给厂商这样一个过程,大概需要2-3个月才能将用户体验反馈回厂商,然后我们再去进行改善。而现在,我们的客户反馈都是实时的,第一天发出的货,客户收到后第二天就会有意见反馈回来。”
李长松透露,飞鸽将在2016年把更多精力放在开发专业比赛用车上,并组建自己的车队,通过乐视体育的平台,以前推广和销售渠道不甚畅通的比赛用车将能够借助互联网平台更好、更快地进行推广。此外,飞鸽还计划推出适合专业选手的骑行训练车,这也将是以智能自行车形式出现的产品。例如通过对骑手在练习过程中的踩踏监测分析踏力是否均衡,方式是否合理,骑行姿势是否正确等,供骑手在后期有针对性地进行调整。李长松说,传统自行车行业是数量上的竞争,利润率只有3%-5%,现在的智能自行车是一个质的飞跃,目前利润率初步测算将达到20%-30%。
大数据时代,很多行业,尤其是传统行业
迎来了巨大的挑战。有的企业认为大数据时代让他们的生存环境异常艰难,也有的企业借助大数据的力量找到了新的发展方向和方式,天津飞鸽就是其中之一。借力互联网,善用大数据让这家传统自行车企业焕发出勃勃生机。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16