京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用大数据确定车险保费 美保险公司精准背后的隐患
美国的保险公司已经开始通过和汽车企业加强合作,对车主的驾驶习惯进行大数据分析,更加精准地确定车主每年需要交的保费,这意味着,习惯开车猛踩油门的车主可能面临保费上浮的风险。
大数据能干什么
据《华盛顿邮报》报道,车险公司正在改变按传统驾车里程确定保险费率的定价方式,将大数据技术应用在驾驶习惯分析上。
通过对大量驾驶习惯数据的分析,保险公司可以更加精准而科学地评估投保车主的驾驶风险,继而合理地确定保费。这些驾驶行为的分析包括车主踩刹车的频率以及每天开车上路的时段等。
4日。美国第三大财产和人寿保险公司利宝互助保险集团(Liberty Mutual)宣布与日本汽车品牌斯巴鲁展开合作。而具体的合作内容从安全驾驶提醒开始——从今年晚些时候,付费购买斯巴鲁信息交互系统的车主可以下载一款智能手机应用软件,其主要功能就是在车主加速或刹车过猛时及时提醒。
这款安全驾驶应用是利宝互助保险一个名为“正轨”的项目的一部分,使用应用的车主可以享受5%的参保费率优惠,如果听从应用中的安全提醒,车主还可以享受最多7折的保险优惠。
科技带来的烦恼
启动于2012年的“正轨”项目,并不是唯一一个拥抱大数据车险的保险公司项目。美国多家保险公司旗下都展开了类似的旨在改善驾驶风险控制的高科技项目。
有专家认为,如果这些基于用户行为的保险大数据运营良好,可以鼓励车主更加注重安全驾驶,既降低了事故风险又节省了保费。
一位供职于全球知名车企的工作人员告诉《第一财经日报》记者,大数据提升安全驾驶的尝试是可行的,“因为驾驶行为直接影响当年的出险次数和金额”。
已经有媒体预计,随着驾驶大数据的完善,未来该技术可以用于小型碰擦事故的定责。
另一方面,也有专家提出,越来越多的美国车主已经开始购买拥有车联网技术等科技含量更高的车型,而精准的驾驶大数据分析或许也会带来烦恼。
美国汽车评价类媒体“凯里蓝皮书”(Kelly Blue Book)的分析师鲍尔(Karl Brauer)称,不要想当然地认为大数据分析总能降低保险费率,高科技也可能在完全没有发生事故的前提下增加你的支出。
鲍尔和其他业内人士的理由是,目前很多保险公司以保费优惠为“引诱”,鼓励车主接受大数据监测,不过保险公司翻脸可能比翻书还快,或许在不久的将来,这些优惠条款就会改变。打个比方,一些车主谨小慎微地安全驾驶了一年,第二年却开始冒失起来。这可能导致他在保费方面掏出更多的钱,因为安全驾驶的那年所享受的优惠折扣可能还抵不上第二年的保费价格调整。
变相监控?
也许你会说,我不在乎价格,那么问题来了,你在乎自己的隐私吗?
保险公司对司机驾车行为的数据会留存多久?这些数据是否会泄露?这些问题的答案取决于每家保险公司的内部政策以及地方法规,因为大数据的底线是遵纪守法。
美国最大车险公司之一State Farm的相关负责人布伦斯(Scott Bruns)称,期待大数据可以切实帮助车主,如果涉及和法规的抵触,“我们会遵守法规”。
不过,在这个万物互联的时代,一个人的驾驶习惯可能很轻易就被暴露。比如,去年12月,利宝互助保险在美国密歇根州和印第安纳州开展了一项自愿者测试,测试的内容是,将上述“正轨”项目的数据采集范围扩大到车主手机上,通过手机上的加速计和GPS监控驾驶者突然变速或其他非安全行为。
State Farm也在美国俄亥俄州推进类似的测试,同时计划在2016年将试点扩大到其他五个州。
美国市场研究公司J.D. Power and Associates负责美国汽车质量的副总裁斯蒂芬斯(Renee Stephens)称,如果车主不愿意被“监控”,可以拒绝参加驾驶安全的大数据项目,不过,如果这些大数据项目未来越来越普及,拒绝加入的车主或许会在保险公司的名单上成为醒目的少数派。
好的技术需要有好的执行,布伦斯表示,精准的驾驶行为数据可以提升产品定价的效率,不过前提是保险公司很好地利用了大数据技术。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16