
大数据成为物流金融研究的新型推进利器
上海是全球最重要与新兴的国际金融城市之一,金融创新是这座金融城市发展的血脉和抓手所在,而物流金融更是上海金融创新中的重头戏,物流金融研究与创新也到了关键和攻坚阶段。作为肩负物流金融研究责职和重任的上海浦东国际金融学会物流金融专业委员会及其物流金融研究院,比较与纵观国内外的长短优劣,并结合国内当前的实际情况,物流金融专业委员会及物流金融研究协会负责人黄青城指出:若要推进和加快物流金融的研究和创新,必须植入类似“龙芯片”和开发新型的“工具与装备”——大数据的摄取和引入,也就是讲要现实而快速地推进物流金融研究,必须挚起大数据这把锋利之器。
日前,物流金融专业委员会及物流金融研究协会就如何推进大数据在物流金融研究中的应用等,特邀美国大数据专家彭河森博士来沪作专题演讲。彭河森结合自己在美国的研究和在亚马逊、微软工作的实际经验与切身体会,阐述以下观点:首先要选择和确定行业背景的切入,建立研究相关的(数学)模型;其次,确定数据采集与验证的方法;其三,大数据应用方式的比较,如分布式,结构式;第四,大数据应用面临的挑战与难点等等,与大家一同分享了当今大数据最前沿的新内容和新动态。可见,大数据已成为我国推动经济转型发展和供给侧改革的新手段。、
彭河森指出,大数据在物流金融研究的应用中,要注意和正确理解广物流和深物流的概念,充分利用物联网、仓储设备设施等介质所提供的基础数据;尤其要重视其中的“行为数据”所担纲发挥的作用。在金融方面,要充分考虑信用信息的来源和可靠性,尤其要注意征信机构等第三方提供的相关基础数据与资料。
物流金融的深度研发,离不开大数据的强大支持。黄青城呼吁并倡议走产学研相结合的道路,即推动研究机构、物流企业、银行保险等金融机构、大专院校诸方面的链动。具体来说,可以设立物流金融大数据研究基金会与专项资金,并以不同方式,吸收国内外各类合规资金的注入,最终实现物流成本的大幅降低;同时加速金融资本对接物流相关产业,更好地推动开发创新物流金融的相关衍生品,从而助力上海金融业的创新和快速发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30