京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代的消费金融该怎么玩?须跃过三道门槛
2010年,消费金融公司开始在我国试点,随着政策的进一步松绑,电商、P2P平台等机构都已经开始尝试进入互联网消费金融市场。据银监会最新数据显示,截至2014年末,全国消费金融行业贷款余额208.8亿元,累计为135万客户提供消费金融服务,发展空间巨大。消费金融的巨大发展空间的背后其实是中国信用卡覆盖人群比例目前还仅有约15%的比例,对应美国70%左右的比例,中国的渗透率很低。美国的整个信用消费的市场在十万亿美元的规模,中国目前还不足两万亿人民币。
尽管电商、P2P等相继进场,但是互联网消费金融的门槛并不低。消费金融服务的是传统银行目前“不能满足”以及传统征信手段“无法覆盖”的人群。整体来说,互联网消费金融的门槛主要体现在三个方面:
一是,如何获得信用评估所需的各类数据。不管是P2P平台、电商或者甚至是个人征信公司,一般机构所掌握的数据都是比较有限的,尤其电商的消费数据并不能完全反映出用户整个的信用体系和画像。央行的征信尚未接入非银行类机构,客户的信用分析也绝非央行征信报告就可以满足。电商、P2P平台若要建立起自己的完善大数据风控体系,首先需要自己去整合大量的数据源并且结构化,需要花费大量的人力物力,如果有信用消费的客户数量有限将更加不经济。
第二,搭建风控模型及算法。即使花费大量的人力物力对接了足够的数据,如果不具备一流的算法及搭建风控模型的能力也一样无法实现真正的信用分析。为满足用户体验,风控决策的时效性也是非常关键的,通常需要在分钟级别的时间内实现对用户的信用分析。
第三,对于P2P平台来说,想要进军消费金融领域,最大的劣势便是消费场景的切入。在消费金融链条中,首先是消费需求的产生,进而才是相关金融服务需求的产生。而电商巨头天然具有黏性较强的消费场景,这是P2P平台比较欠缺的。
从业务模式来说,复星昆仲资本投资的量化派的模式会是目前最有潜力的一种发展方向。这家由华尔街精英周灏在2014年2月创办的公司,定位是数据驱动的信用消费金融平台,为消费场景提供消费信用额度的同时,帮助消费场景实现流量变现。周灏是量化派的联合创始人兼CEO,获北京大学物理学士和莱斯大学物理博士学位,并先后任职Capital One、Morgan Stanley、Barclays。联合创始人王倪毕业于中科大少年班,并获佐治亚理工大学统计学博士,先后任职Capital One和Google。联合创始人罗晓献毕业于中科大少年班,并获耶鲁大学统计学博士,曾任职Blackrock。核心团队还包括国内金融机构及一流互联网公司的人才。
量化派通过平台自身沉淀下来的用户历史信贷交易数据,合作取得的其他机构大量客户的逾期、违约数据(建模必须数据),用户授权的通讯、电商、学历、邮箱、央行征信数据,经第三方征信机构采集的电商交易数据、社交数据、银行卡消费等数据,以及其他个人基本资料、公共记录等信息,分析提炼风险评估及定价模型,并根据模型及数据从多维度为用户描绘一个立体化的征信画像,为开展互联网消费金融业务提供坚实基础。充分利用金融风控模型及Google的运算技术,量化派目前已经可以做到快速风险量化及针对每个人的信用评估给予不同的利率定价。
量化派的定位,在于链接消费场景(或者信贷流量入口)与金融平台,相当于高速信贷工厂。例如量化派可为不具备信用赊购技术能力的电商企业提供信用支付解决方案,实现流量变现及增加交易额。
事实上,互联网消费金融平台要向用户授信其实是需要大量资金的,光凭自有资金是远远不够的。所以,在资金端方面,量化派与大量银行类金融机构、互联网金融平台等建立合作,量化派给资金方提供优质客户,进行风险定价,资金方根据自身风险承担能力,选择相应的借款对象。量化派目前有超过100家合作伙伴,包括58同城、卡牛、消费金融公司、银行、拍拍贷等,目前业务量每个月都在成倍的增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08