京公网安备 11010802034615号
经营许可证编号:京B2-20210330
发挥大数据在国家治理中的作用
当前大数据正在改变世界,而数据收集和分析则是提升应急管理功能的重要手段。欧美一些国家已经开始把大数据运用到应急管理中,并取得一定成效,当前国内实务界和学术界虽然开始关注大数据的应用,但相关研究还比较缺乏。因此,我国需要在大数据战略、大数据开放政策、大数据在应急管理中具体应用形式等方面做出部署与探索。
其一,制定国家大数据战略,加大对大数据投入。进入21世纪以来,特别是近年来,许多国家重视大数据在公共管理中的应用,并制定了国家级大数据战略。各国的大数据战略表明,“大数据”并不仅仅是一个技术概念,它已经切实成为提高国家治理能力,改进公共管理水平乃至增强国家竞争力的重要因素。目前,广东省已经在我国率先试水大数据战略,并宣布要在近期开放一部分政府数据。这是我国地方政府回应“大数据时代”的具体措施。但是相对于英、美等西方国家和日、韩等亚洲近邻而言,我国还没有形成完善的国家级大数据战略。
其二,制定大数据开放政策,逐步扩大数据共享范围。除了制定大数据国家战略外,还要重视制定配套的数据开放政策,如目前美国政府数据开放网站(data.gov)可供检索的数据集已超过10万项。继美国之后,很多国家也制定政策要求数据开放。可以说,政府数据公开与共享是大数据化改革的核心内容。从各国的趋势看,配合国家大数据战略制定数据开放政策和要求数据共享也是非常必要的。另外,“数据开放”已经成为各国共识,随着国际数据市场的逐步形成,没有符合国际标准的国家级数据公开标准,也就难以建立能与国际市场接轨的数据市场管理标准。“数据开放”已经成为国际竞争力的一环,且欧美等国已抢占先机。所以无论从优化公共管理的角度,还是从增强国家竞争力的角度,抑或是规范数据市场的角度,由中央政府领衔制定国家级数据开放政策是非常必要的。
其三,探索大数据在应急管理领域中具体应用形式。事前准备阶段,政府或其他部门需要为大数据的应用做出准备。在管理和权限设置上,有必要设置“大数据信息官”并赋予其改进组织流程的权限,以推进大数据在部门工作中的落实。在技术升级和设备使用方面,政府或其他部门要明确需要解决的问题,以需求为导向,进行一定设施的准备。事中响应阶段,信息的有效聚合和快速传递是核心环节。政府或其他部门在使用大数据增强信息采集能力的同时,也要进行数据共享,建立统一的数据中心,以便在应急管理过程中提高效率。同时,在应急管理的事中响应阶段,指挥人员、专家技术人员和现场处置人员的联系也至关重要,建立高效的信息共享渠道也是很重要的方面。事后处置和救援阶段,及时了解救援信息和对所获信息的处理最为重要。如果有明确的信号可以让应急处置人员快速了解需要救援的地点和所需救援内容,救援效率便可大幅度提高。大数据在事后处置的应用便是遵循这种逻辑:通过网络或者监控设备,采集需要救援的信息,用算法筛选整合这些信息,并将指令快速传达给应急处置人员,从而提高救援效率。
其四,完善隐私保护政策,注重公共安全和公民隐私之间的平衡。大数据时代,如何对公民个人隐私保护也很重要,最好能在公共安全和公民隐私之间达到平衡。2013年5月,爱德华·斯诺登披露了美国国家安全局自2007年实施的绝密电子监听计划,即“棱镜计划”(prism),允许fbi和nsa对包括微软、雅虎、谷歌、苹果在内的九家it巨头的数据进行监控和挖掘,直接或间接接触大量个人聊天日志、私人数据、语音通信、传输文件和社交网络数据。尽管美国自我标榜“重视个人隐私”,但是公民个人的数据信息没有得到有效保护,引发了对“大数据时代”个人隐私的广泛讨论和关注。技术对个人隐私的威胁已经超出了原有法律框架。如果不对采集的个人信息使用进行有效规范,极有可能会出现大规模侵犯隐私的事件,从而使大数据信息采集成为一种“社会安全隐患”。因此,全面的数据隐私保护与最大的公共安全追求将是大数据时代面对的一个重要课题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21