
汽车大数据时代悄然来临 逐步覆盖全链条_数据分析师考试
传统的汽车行业数据来源不畅、结构单一、应用较浅,无法满足企业的数据需求。而互联网、移动互联技术的快速普及,正在诸多方面改变着人们的车辆购置和使用习惯,使传统的汽车数据收集、分析和利用方式发生重大转变,必将推动汽车产业全产业链的变革,为企业带来新的利润增长点和竞争优势。
以上是在中国汽车技术研究中心、中国汽车流通协会等单位共同举办的“2015中国汽车产业数据研究峰会”上,参会代表们达成的共识。会议围绕如何利用网络化、数字化推动我国汽车产业发展这一主题,进行了广泛而深入的讨论。
逐步覆盖全链条
据与会专家介绍,目前在数据收集方面,车企、经销商、互联网及消费者等多渠道的数据收集方式日趋完善,使汽车大数据逐步覆盖全链条。车企大数据包括客户信息、交易信息、车辆信息、生产信息、采购信息、维修信息、投诉信息等,随着企业信息管理水平的提高以及新的数据采集技术的使用,这些数据都将逐步得到完善。
随着数据的收集应用,汽车经销商通过移动互联、后台音频整理、证照识别录入等新技术的使用,实现从消费者“关注”到“消费”整个过程核心行为要素的实时监测,确保消费者入店行为数据的全录入,同时监测车辆4s店维修保养信息。通过统计微博、峰会、网页等互联网大数据,企业可以监控客户进入首页,查看车辆详情及停留时间,洞察客户对车辆的关注点和走势,掌握不同客户的潜在需求及预期,监控产品舆情反馈等等。在消费者方面,车联网将对客户使用车辆的信息进行监测,包括车主行为数据、车况数据、位置数据、驾驶数据等。
在数据分析方面,需要将多渠道、标准不一的客户数据进行整合,建立汽车大数据库。
据专家介绍,建立汽车大数据库主要分6步:数据融合、用户识别、全网用户识别、用户标签、用户聚类、用户细分。数据融合是把分散在不同系统之间的数据整合在一起,包括生产数据、销售数据、售后数据、互联网数据等。用户识别是通过数据清洗,识别出每个客户的详细信息。全网用户识别是采集客户的网上行为数据,进行全网客户识别,产生360度全方位客户视图。用户标签是将每个客户的特点、爱好、生活习惯,进行细致区分,并以标签化进行用户定义。用户聚类是指根据客户的标签进行分组。用户细分是对客户完成精准细分,针对目标客户开展一对一精准营销。通过这6步即建成统一、整合、可直接使用的数据库。
数据应用全方位
在数据利用方面,汽车行业对互联网、大数据等新兴科技的利用涉及到产业链的各个环节,包括:用户洞察、开展精准营销、改善客户管理及服务、改善产品研发和提升产品质量、业务运营监控、汽车后市场、交通领域、汽车流通等方面。通过对多渠道的汽车大数据进行融合及挖掘,能够深刻地了解客户需求及动向、掌握客户信息、进行市场细分、竞争分析、掌握客户满意度等。大数据还可用于开展精准营销,通过整合汽车媒体、微信、官网等互联网渠道潜客数据,扩大线索入口,提高非店面的新增潜客线索量,并挖掘保有客户的增购、换购、荐购线索,从新客户和保有客户两个维度扩大线索池;运用大数据原理,定义线索级别并进行购车意向分析,优化潜客培育,提高销售线索的转化率,提升销量。
大数据应用于客户管理方面,可以提升客户满意度,改善售后服务。通过建立基于大数据的CRM系统,了解客户需求,掌握客户动态,为客户提供个性化服务,促进客户回厂维修及保养,提高配件销量,增加售后产值,提升保有客户的利润贡献度。
大数据可以改善产品质量,促进产品研发。通过用户洞察,进行产品设计改进及产品性能改进,提高产品可靠性,降低产品故障率。
大数据应用在企业运营方面可通过搭建业务运营的关键数据体系,开发可视化的数据产品,监控关键数据的异动,快速发现问题并定位数据异动的原因,辅助运营决策。
助推汽车行业发展
另据专家介绍,目前汽车行业对大数据的收集、分析和利用仍处于探索阶段,因此,此次中国汽车产业数据研究峰会的召开正当其时。与会代表纷纷表示,峰会的成功召开,给业内企业提供了汽车行业利用互联网、大数据转型升级的经验交流平台,使业内企业能全面了解汽车行业各个环节利用互联网、大数据等新技术的最新进展,有利于各种新理念和新技术的快速应用,大大加快了汽车行业互联网化、数字化的进程,对于推动汽车行业的发展有着十分积极的意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29