
大数据、互联网金融两大风口的融合_数据分析师考试
本月初,支付宝9.0版本发布,增强了社交属性,但手势解锁功能却被强制关闭,这让许多用户大呼没有安全感。
对此,支付宝自信回应,因其拥有大数据风险防控体系“安全大脑”,若非主人,即使掌握密码,安全大脑也会阻止账户资金被挪用。那么,安全大脑为何让支付宝如此有底气?
安全大脑是支付宝借助大数据技术研制的一套风险防控体系,根据日常对支付宝使用者的各方面习惯的全面收集,经过高速计算判断操作风险,来保障用户的账户交易安全。
风控大脑会根据账户、设备、位置、行为、关系、偏好六大维度,一万条策略来判断是否是主人在操作账户。这其中涉及很多前沿科技,每个人触控手机屏幕的方式不同,安全大脑借助陀螺仪、重力感应将个人习惯记录收集。然后,通过指压、接触面积、连续间隔时间等,来判断是否是主人操作。
支付宝借助大数据平台的监测分析,对个人所在关系网络中的每个个体进行信用判定,一旦与危险账户发生资金关系,便立刻警示。
用户的行动轨迹也是安全大脑判断的范围,一旦在不经常购买的城市,安全大脑便认为此项操作可疑。0.15秒之内,安全大脑会通过一万条策略的综合评估,打出一个风险评分,评分高,会直接阻止交易或者进行二次校验,继续判断是否是本人。
从安全大脑,我们已经可以依稀看到,在互联网时代,对数据的占有绝对是首当其冲。
目前许多互联网公司都致力于花样收集用户信息。在提供服务之前,通过注册、授权等方式获取用户个人信息,了解用户搜索轨迹从而整合数据;在安装手机APP之前,通过读取联系人、使用摄像头、录制音频、使用GPS等捕捉用户个人信息;申请会员时,要详细填写个人信息,并限制必填项,否则不予注册,自然也享受不到相应服务。
这样看来,我们似乎是以个人信息数据为筹码,交换相应的服务体验。而现实是即使还未享受到服务,个人信息已然贡献,互联网的分享精神就是这么给力。
今年4月,支付宝曾发布了一套大数据系统“到位”,用户可以在该系统中发布各种个性化需求,系统经大数据运算和精准匹配,瞬间就可以为其找到最适合响应需求的人,之后,结合手机的LBS功能,“到位”会快速让供需双方找到彼此,促成交易。
诚然,大数据与互联网是各取所需的合作伙伴关系,而最终目的都只有一个——利益。合理化取得最大收益是商家永恒的追求,在互联网时代借助大数据则更有助于这一追求的实现。
除了可以全方位掌握用户的活动轨迹并分析预测其预期活动外,大数据对征信体系建设的贡献则有相当助益。
由于传统征信方式是通过固定途径收集一些可用作评级的信息,由分析人员对各项数据进行分析、评级,最终得到受评对象履约能力和履约意愿的评级。
因此数据容易失真产生偏差,由于人工的介入使其具有一定的主观性,结果与客观事实往往会有些许偏差。另外,因其实时性差、后续难以更正,在数据更新方面不是很方便,人力资源成本较大。
而大数据的产生,因其数据覆盖面广,涉及的维度全面,通过互联网方便快捷的服务全体商家,则可以很好的解决传统征信体系面临的问题。
大数据信用采用云计算技术,从数据录入开始到评价结果输出的整个过程全部由计算机算法完成,避免了主观判断的影响,确保评价结果的真实性;即使同时处理多个受评对象,仍然能够保证快速、准确的高效性。
大数据信用的运行成本主要来自知识产权和硬件的投入,相比大规模的人员需求,低成本优势显而易见。
此外,大数据信用还能够满足评价结果与信用信息的同步,也就是说,当受评对象的信用信息发生变化时,能够对其信用进行快速及时的计算,保证了信用的动态实时性。
芝麻信用分则很好的依托了大数据的先天优势,为用户提供全方位的优质服务。
早在今年1月,蚂蚁金融服务集团旗下的芝麻信用被允许进行个人征信业务。形式上,其采用了国际上通行的信用分——芝麻分来直观表现信用水平高低,分数越高代表信用程度越好,违约可能性越低。
芝麻信用对海量信息数据进行综合处理和评估,其中以用户信用历史、行为偏好、履约能力、身份特质、人脉关系五个维度为主。主要接入了阿里巴巴集团的电商数据和蚂蚁金融的互联网金融数据以及公共机构的数据,运用大数据及云计算技术,客观评估并呈现个人的信用状况。
通过对大量数据的分析和挖掘,芝麻信用可帮助用户验证个人身份信息、评估信用风险,结合芝麻信用的反欺诈技术和黑名单共享,金融机构可将违约风险降到最低,切实保证用户资金安全。
伴随着行业的不断发展和进步,未来的大数据还将被运用到更多更深层次的领域,帮助行业获得更快更好的发展。
“互联网时代是没有隐私的。”这样的论调经常出现,无论是对个人信息安全的担忧,还是对互联网时代信息爆炸的无奈,都透露出对大数据的既爱又恨。互联网时代注重分享精神,分享经济是其典型代表,数据的分享则是重中之重。
中国有大量的数据,生产数据、电商数据全球领先,这些数据背后的价值难以估量。现在,国家提出互联网+行动计划,大数据本身是个基础架构,也是一个催化剂。
随着互联网的健康发展,“得数据者得天下”将慢慢实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05