京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业发展需“接地气”_数据分析师考试
“大数据成为了网络时代人类社会的重要资产。”“大数据时代,一切都靠数据说话。”……7月21日,由中国人工智能学会、国际粗糙集学会主办的2015年大数据价值实现之路高峰论坛在重庆邮电大学拉开帷幕,来自国内外计算机科学与技术领域的专家学者与我市高校师生、科研院所研究人员共同探讨了云计算和大数据产业的前沿成果和发展趋势,并为重庆大数据产业的发展建言献策。
大数据聚类会成为很多行业的核心竞争力所在
“大数据本身既不是科学,也不是技术,它反映的是网络时代的一种客观存在。”中国工程院院士、中国人工智能学会理事长李德毅这样认为。
在他看来,随着信息技术,尤其是传感器、通信、计算机和互联网技术的迅猛发展和广泛应用,人类获取数据的手段越来越多,速度大大加快,成本急剧降低,层次和尺度更为精细,人联网和物联网又使得人人物物都成为数据源,这样一来,大数据成为了网络时代人类社会的重要资产。
既然是一种资产,那么人类如何来利用,实现大数据的价值?
“要做到大数据价值实现,首先要做到价值发现,也就是说,只有你把大数据的价值发掘出来,才能懂得如何利用大数据的价值。”他说。
不过,人类社会文明进入到数据密集型的新时代,并且数据正在以指数级的规模快速增长,这也给人们认知大数据造成了很大困扰。
李德毅表示,大数据认知的突破口在聚类,聚类是发掘大数据价值的第一步,也就是在相似的基础上收集数据来分类。
以汽车保险为例,在物联网时代,当汽车成为大数据发生器以后,每一次驾驶、行程、维修甚至每一次踩刹车,都会被记录在案。利用大数据聚类分析,一家保险公司就可以对一个车况好、驾驶习惯好、常走线路事故率低、不勤开车的特定客户给予更大的优惠,而对风险太高的客户报高价甚至拒绝等。利用大数据聚类分析为客户提供个性化方案,将颠覆保险公司传统的商业模式。
由此可以看出,聚类让大数据价值得以发现,进而让大数据价值得以实现。大数据聚类会成为很多行业的核心竞争力所在。
机器人既使用大数据也产生大数据
导航机器人、路口机器人交警、无人驾驶汽车……这些新奇的发明背后,实际上都有大数据的支持。
在李德毅看来,机器人既使用大数据也产生大数据,既是大数据的产物,也是大数据的推动者,机器人是大数据应用的一个典型代表。
“人工智能也是当下的一个热词,但人工智能并不是要人工造出一个生物意义上的人脑,而是要用机器实现在某一方面、某一领域或者某一情境下的人的智能。”他说,基于对大数据的认知,人们可以造出各式各样的机器人,解决机器人如何说、如何看、如何想和如何做等问题。
目前,他的团队也正在研发无人驾驶汽车,并已经成功试跑。
“在汽车车顶上安装一个64线激光雷达,实时获取路况数据,再利用微电子技术对数据加以分析,汽车依靠分析结果就能独立完成决策、自动驾驶。”李德毅介绍,这就是大数据的作用,而且应对复杂的测试路段,无人汽车耗时12分钟,比参加测试的有人驾驶汽车还要快。
当机器人时代真正来临,利用大数据智能分析与处理,联网后的机器人将更好地实现人与机器人、机器人与机器人、物与机器人地协调工作,为人类社会带来变革。
大数据产业发展需“接地气”
“近年来重庆的大数据产业有了很大发展,但整体水平仍有待提高。”中国人工智能学会副理事长、重庆邮电大学教授王国胤表示。
前不久,国务院发文敲定“互联网+”创业创新、“互联网”协同制造等11项重点行动,旨在让“互联网+”成为经济社会创新发展的重要驱动力量。信息技术的发展及其在各行业的渗透,将更凸显云计算、大数据在当今社会的作用。为此,他认为重庆更应该借此大好机遇加快发展大数据产业。
在他看来,各行各业都可以利用大数据,重庆发展大数据产业需“接地气”,结合重庆自身实际,但并不一定需要具体路线图,而是鼓励各行各业勇于创新。
“目前,我们也在积极与国内外机构合作,为重庆发展大数据产业助力。”他表示,日前,重庆邮电大学与加拿大阿尔伯塔大学联合成立了智能计算联合实验室,此次来渝参加高峰论坛的加拿大智能计算首席科学家、加拿大皇家科学院院士Witold Pedrycz也被聘为重邮客座教授,共同为我市发展大数据产业提供技术支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01