京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据挖不到的是情怀_数据分析师考试
某购票平台日前发布了一个名为“大数据时代的电影消费洞察”的报告。不仅有常见的观影习惯、观影人群的统计,还发布了更大的野心,比如将利用购票数据对电影拍摄和宣传发行提出建议,有助于选择更卖座更有票房潜力的电影题材。
这是个顺理成章的野心。看电影不像买水果,你可以先看后买,甚至先尝后买。看电影就像一次小小的猜谜或者冒险,好看还是难看,喜欢还是厌烦,盖头揭开之后才会知道。此前你看到的宣传,无一例外的是王婆卖瓜自卖自夸,谁见过批评自己的广告?其实,卖家也悬着一颗心呢,上一部大卖下一部冷场的遭遇并不是个案,片商们前赴后继地交学费还是找不到一劳永逸的秘诀。
大数据的优越感此时显露无遗。观众喜欢小清新还是重口味、哪个明星更有票房号召力、哪些题材有话题性、哪些炒作效果好、可能的票房是多少,进行数据分析就可以得到答案。然后,精准地投其所好、按需生产,自然容易产销对路,投资风险也会随之降低。有点像打牌,虽然不能清楚地看见对手的每一张牌,但掌握了对手的偏好和习惯,胜算就大得多了。
大数据真是个靠谱的好东西。可惜,它碰到的是电影这个不怎么靠谱的特殊品。电影生产的,不是实实在在的水果,而是一个银幕上的梦。观众买到的,是很快就会化作回忆的几个小时的体验。给观众一个什么样的梦,就是业界良心了。此时,大数据就没那么神勇了。
电影产业链的每个环节都需要数据支持,这已经是个不争的事实。大众喜闻乐见,当然是个好理由,却不能视为唯一的标准。一味看重市场强调票房,就容易用市场逻辑取代艺术思维,导致天平的失衡。底层的努力奋斗哪有上层的浮华时尚来得好看,缜密深沉的剧情哪有简单狗血来得痛快?没有了艺术思维,最吸引人的恐怕就是直接的感官刺激了。大众此时此地的喜好,多半是即食性的消费行为,选择观众最习惯最好消化的喂食,这样的影片除了提供酸爽的快感,几乎没有任何营养可言。比如拍摄速度奇快票房奇高的《小时代》和《何以笙箫默》,乍看起来很是养眼,似乎也无辜无害,粉丝和明星之间一个愿打一个愿挨,搞不好还是两厢情愿皆大欢喜,关你啥事?如果粉丝们都甘之如饴地接受在物质奢华面前走形的友谊、爱情,如果观众们都把苍白矫情的粗制滥造当做格调和情趣,那就真该问一下业界良心在哪里了。这些伴随着粉丝成长的电影,会影响着一代人的价值观和文化品位。作为电影中的一个类型,它们有存在的理由,却不该是市场的垄断者。在它们之外,还有更广阔更深沉的生活,如果因为主流观影人群的陌生或排斥而不能进入影院,就是不小的遗憾了。
能够传诸后世被奉为经典的东西,往往是大数据的挖掘机难以抵达的角度和深度。大数据会推出《泰囧》、《心花路放》,但不会对《一九四二》感兴趣,更不可能青睐《归来》的故事。一个《小时代》大行其道的时代,不会是电影的大时代。
一个时代的电影,总带着一个时代的清晰烙印,也必然带着一个民族的文化气息。电影从来不单纯是个娱乐产品,它还给人们以启迪和教育。电影的教育意义,在电影的故事和情节中,更在故事和情节背后的人文关怀中。在电影背后是怎样的一双眼睛,是进步的还是保守的?用怎样的价值观去看待当前的时代和远去的历史,用怎样的视角去观察和表现不同阶层的人群,都会通过观影经历潜移默化地传达给观众。这种细腻微妙的文化情怀,这种主创人员创造出的独特风格,这种经由火候和经验文火炖出来的分寸感,是佳片的必备因素,却是大数据无能为力的。在呼唤人文情怀、盼望精品力作的今天,即使暂时没有精品批量出现,至少也该旗帜鲜明地亮出精品思维和精品追求
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22