
大数据时代对证券行业意义非凡_数据分析师考试
大数据现在不仅仅是IT行业的一个炒作的概念,更像是一场IT界的全民运动。正可谓时不我待,我国的经济总量位居世界前列,与此同时具有世界上最多的人口,随着信息化日渐深入我国百姓的生活,数据及其价值是一项非常值得探索的领域。国内证券公司也已经在大数据领域进行了一些探索。
大数据对证券行业意义非凡
随着社交化成为人们生活与工作中必不可少的环节,如何让社交网站所产生的大量数据产生价值成为最近几年一些基金公司或者科学院校思考的问题。2011年,英国对冲基金Derwent Capital Markets建立了规模为4000万美金的对冲基金,该基金是首家基于社交网络的对冲基金,该基金通过对Twitter的数据内容来感知市场情绪,从而进行投资。无独有偶,通过分析Twitter用户对股票的敏感度以及市场情绪也成为科学机构的研究对象,2012年年初,美国加州大学河滨分校公布了一项通过对Twitter消息进行分析从而预测股票涨跌的研究报告。
实际上,当前广大行业用户需要明确知道的一点就是,过去传统的数据仓库与当前的大数据处理最大不同就是一个是往后看,另外一个是往前看,这就好比数据仓库是坐在自己的车里,通过后视镜看后面的镜像,而不是你面前所面对的东西;而大数据分析更多地是向前看,看我们即将面对什么样的问题,而做出分析与预测。
企业数据就是新时代还未开采的石油,具有非常之高的价值。国外一些金融机构已经开始做一些前瞻性的研究,这种做法是非常值得学习和借鉴的。比如国内已经有一些券商开始研究互联网、微博与股市的关系,通过舆情分析现有的业务与数据研究上市公司的走势。目前国内券商在大数据方面仍然需要有很多工作要做。国内大部分证券公司仍然没有摆脱交易性数据为主的特点,有前瞻意识的证券公司已经开始做一些转型了,对微博、互联网等外部数据进行一些分析与预测。
证券行业该做好哪些准备?
大数据实际上在某种程度是一种IT建设成果的转化,如果没有一个良好的IT基础架构以及业务应用环境,那么即使上了大数据解决方案也不一定能够获得多大的效果。
对像云计算这些比较热门的概念其实需要冷静的心态。特别是在金融行业,更加需要一个谨慎的态度。这并不意味着金融行业就是一个保守落后的行业,大部分的金融行业用户对云计算以及IT基础架构建设都是做的多,说的少,一步步的稳步推进着云计算的建设。目前很多证券公司都在做虚拟化方面的工作,包括服务器虚拟化和桌面虚拟化,甚至有些公司已经把一些相对关键的业务应用放在了虚拟化环境之中。
证券行业其实是一个跟市场波动紧密联系的行业,大牛市和大熊市之间的区别同样能够反映在证券公司身上。好行情之时,证券公司往往迎来利润的高峰期;差行情之时,证券公司甚至可能需要面对亏本的局面;如此一来,其实云计算和大数据的应用模式是非常适合证券行业的。证券行业的确是越来越有必要推进云计算。业务高速发展与扩展,意味着数据中心设备、应用都需要扩张,这会造成机房空间紧张、管理成本上升等难题,我们需要把以前的资源有效的利用起来,这样才能够在市场波动之中立柱。
针对市场波动对证券公司IT建设的影响,CIO需要有更加合理的规划,一个聪明的证券公司,一定会在行情比较清淡的时候加强基础建设,替换老系统,推进基础设施的建设,这时选择这么做的IT风险是最小的。在大牛市行情好之时,做一些系统变更的风险系数非常之高,并且这个时候IT会非常繁忙,管理容易出错。在冷静的时候进行规划和实施,充分发挥云计算的特点、利用好过去的资源,虽然投入会较大,但从时间上均摊来看,会取得一个非常不错的投入产出比。
如今,大数据不再仅仅局限在媒体与厂商之中的讨论,它犹如一场数据旋风开始席卷全球,从各行各业的IT主管到政府部门都开始重视大数据及其价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04