京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代对证券行业意义非凡_数据分析师考试
大数据现在不仅仅是IT行业的一个炒作的概念,更像是一场IT界的全民运动。正可谓时不我待,我国的经济总量位居世界前列,与此同时具有世界上最多的人口,随着信息化日渐深入我国百姓的生活,数据及其价值是一项非常值得探索的领域。国内证券公司也已经在大数据领域进行了一些探索。
大数据对证券行业意义非凡
随着社交化成为人们生活与工作中必不可少的环节,如何让社交网站所产生的大量数据产生价值成为最近几年一些基金公司或者科学院校思考的问题。2011年,英国对冲基金Derwent Capital Markets建立了规模为4000万美金的对冲基金,该基金是首家基于社交网络的对冲基金,该基金通过对Twitter的数据内容来感知市场情绪,从而进行投资。无独有偶,通过分析Twitter用户对股票的敏感度以及市场情绪也成为科学机构的研究对象,2012年年初,美国加州大学河滨分校公布了一项通过对Twitter消息进行分析从而预测股票涨跌的研究报告。
实际上,当前广大行业用户需要明确知道的一点就是,过去传统的数据仓库与当前的大数据处理最大不同就是一个是往后看,另外一个是往前看,这就好比数据仓库是坐在自己的车里,通过后视镜看后面的镜像,而不是你面前所面对的东西;而大数据分析更多地是向前看,看我们即将面对什么样的问题,而做出分析与预测。
企业数据就是新时代还未开采的石油,具有非常之高的价值。国外一些金融机构已经开始做一些前瞻性的研究,这种做法是非常值得学习和借鉴的。比如国内已经有一些券商开始研究互联网、微博与股市的关系,通过舆情分析现有的业务与数据研究上市公司的走势。目前国内券商在大数据方面仍然需要有很多工作要做。国内大部分证券公司仍然没有摆脱交易性数据为主的特点,有前瞻意识的证券公司已经开始做一些转型了,对微博、互联网等外部数据进行一些分析与预测。
证券行业该做好哪些准备?
大数据实际上在某种程度是一种IT建设成果的转化,如果没有一个良好的IT基础架构以及业务应用环境,那么即使上了大数据解决方案也不一定能够获得多大的效果。
对像云计算这些比较热门的概念其实需要冷静的心态。特别是在金融行业,更加需要一个谨慎的态度。这并不意味着金融行业就是一个保守落后的行业,大部分的金融行业用户对云计算以及IT基础架构建设都是做的多,说的少,一步步的稳步推进着云计算的建设。目前很多证券公司都在做虚拟化方面的工作,包括服务器虚拟化和桌面虚拟化,甚至有些公司已经把一些相对关键的业务应用放在了虚拟化环境之中。
证券行业其实是一个跟市场波动紧密联系的行业,大牛市和大熊市之间的区别同样能够反映在证券公司身上。好行情之时,证券公司往往迎来利润的高峰期;差行情之时,证券公司甚至可能需要面对亏本的局面;如此一来,其实云计算和大数据的应用模式是非常适合证券行业的。证券行业的确是越来越有必要推进云计算。业务高速发展与扩展,意味着数据中心设备、应用都需要扩张,这会造成机房空间紧张、管理成本上升等难题,我们需要把以前的资源有效的利用起来,这样才能够在市场波动之中立柱。
针对市场波动对证券公司IT建设的影响,CIO需要有更加合理的规划,一个聪明的证券公司,一定会在行情比较清淡的时候加强基础建设,替换老系统,推进基础设施的建设,这时选择这么做的IT风险是最小的。在大牛市行情好之时,做一些系统变更的风险系数非常之高,并且这个时候IT会非常繁忙,管理容易出错。在冷静的时候进行规划和实施,充分发挥云计算的特点、利用好过去的资源,虽然投入会较大,但从时间上均摊来看,会取得一个非常不错的投入产出比。
如今,大数据不再仅仅局限在媒体与厂商之中的讨论,它犹如一场数据旋风开始席卷全球,从各行各业的IT主管到政府部门都开始重视大数据及其价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22