
为什么说大数据是智能汽车的基础_数据分析师考试
可能有人会说,智能汽车不是都已经实现了吗?正在热卖的特斯拉和已经广为人知的Google无人驾驶汽车不就是智能汽车的代表吗?
我的看法是:这仅是智能汽车的星星之火,大部分的汽车还仅仅局限在加装智能硬件实现,能重新完整开发设计一个智能系统的也只有特斯拉和Google两家,并且也还存在种种问题,没有普及开来。
真正要实现智能汽车的关健是智能汽车数据孤岛的互联互通,这是智能汽车行业发展最大障碍之一。
先来看看智能汽车大数据的生产,几乎所有路上跑着的汽车都在产生难以置信的庞大数据量,轮胎气压,到发动机转速,到油温和速度,刹车片在传感器的监测之下,汽车每小时能产生5-250GB的数据。谷歌无人驾驶汽车每秒产生约1G的数据,相当于每秒发送20万封纯文本电子邮件或用电脑上传100张高清数码相片,每一辆高度电气化集成的汽车都是一个庞大的数据库。
有了这么多大数据,按理说我们的汽车智能应该普及度如此之低?电动车,货运,商务,私家车应该都享受到大数据带来的智慧,关健的问题是这各个大数据是孤立互不相联的,智能汽车的大数据平台化严重不足,目数据平台化大众汽车做得相对较好,这跟它是传统汽车厂商,有足量的销售产量息息相关。
那么我们来探究下为何如此?
1.汽车本身系统工程产品,汽车行业产业链太长,产品研发和产业整合难度大。
能重新完整开发设计一个智能系统的也只有特斯拉和GOOGLE两家,而且还存在种种问题,汽车行业的产业链条,配件就有数千种,4S店更是数为胜数,还牵涉到保险公司,与市政建设公路的智能化也密切相关。智能交通是一定需要政府的参与才能实现,智车汽车行业的发展也需要政府战略指导。就像“万众创新,大众创业“的政策支持和鼓励一样!
2.汽车厂商通讯标准各不统一,私有协议破解难度大。
OBD是汽车总线数据收集的一个关健设备,4S店维保故障判断,尾气的排查,保险公司取证数据都是需要从这个设备读取,但如果读取到发动机和车主更私密的信息需要破解OBD其私有协议,这个各个厂商各不统一,不像网络通讯都遵循TCP/IP协议,这也是数据孤岛形成的根本原因之一。
私有协议的破解本身除了有知识产权的风险以外,也存在由此引起的汽车安全事故责任的区分。一般破解私有协议的汽车也再享受不到原厂的服务。
3.传统汽车厂商之间以及与新生的互联网公司之间的利益纠葛。
汽车行业是一个庞大的产业链条,从整车到配件到服务再到保险,传统汽车厂商之前都是各自为营,市场本身就是冲突的,传统行业传统做法也不提畅共享。而共享是受互联网倒逼传统的结果。新生的互联网公司的智能硬件更多的是通过后置安装实现,这样只实现汽车部分功能的智能。导航仪,行车记录仪就是一种,通过公有协议将汽车运数据上传到手机APP也是一种。
对于数据的挖掘,需要云计算,大数据专业公司的技术支撑,但数据就像私家珍宝谁也不可能轻易共享,但传统汽车厂商很难短时间内能建立自已的大数据挖掘的人才队伍,这是两个完全不同的分工。
人对于车最本质的需要,是安全舒适轻松的从一个地方到另一个地方,自动驾驶和全自动化服务是智能汽车的终极目标,但安全却是需要反复验证的。
而实现这终极目标的关健是:
数据交互,人与车的交互,车与车的交互,车与路的交互,车与4S店,4S店与汽车厂商之前的交互。车与车主驾驶者的交互,充分的掌握汽车实时的运行数据,这些数据可以实时传给汽车服务商对汽车及时保养和安全检查。同时人车交互可以让驾驶者提前收到车况的预警信息,在事故发生时主动制动。人车交互语音信息是大家都在探索的方向。
车与车的交互就像智能人与人之间的交互一样,礼貌行车,安全行车,数据共享这将是车智能的源泉,从智能汽车到汽车智能的关健。车与路的交互依赖道路的智能化,车和智能交通设备之间的感应,车与4S店交互实现全自动化的服务,定期维护保养再也不需要人不离车,才能安全实现。
智能汽车大数据是汽车智能的前提和基础,是含金量足够丰富的黄金宝矿,但这需要我们准备好工具,储备好人才,携手向前,才能攫取这宝贵财富,才能享受到真正智能汽车的智慧生活!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01