cda

数字化人才认证

首页 > 行业图谱 >

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”
2025-10-13
在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易系统、支付平台、物流系统里 —— 这些碎片化的数据无法直接支撑深度分析(如用户生命 ...

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术
2025-10-11
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银行 APP 的 “登录→查询余额→转账”—— 都构成了带有时间顺序的 “行为序列”。这些 ...

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”
2025-10-11
在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified Data Analyst)分析师每次取数都需 “翻箱倒柜”,不仅浪费 60% 的时间在找数据上,还 ...

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧
2025-10-10
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转为字符串用于报表展示,亦或是调整字符编码适配不同系统,都离不开专门的转换工具。CON ...

CDA 数据分析师:穿透数据治理体系,成为数据有序运转的 “核心引擎”

CDA 数据分析师:穿透数据治理体系,成为数据有序运转的 “核心引擎”
2025-10-10
在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口径不一(如 “GMV” 有 3 种统计方式)、敏感数据泄露风险频发、核心数据质量差(缺失 ...

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南

【CDA干货】XGBoost 决策树:原理、优化与工业级实战指南
2025-09-29
XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型,但传统决策树存在 “易过拟合、精度有限、对噪声敏感” 等缺陷。而 XGBoost(Extreme ...

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”

CDA 数据分析师:精通标签加工方式,让数据标签从 “raw” 到 “ready”
2025-09-29
在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加工—— 即将分散的原始数据(如用户行为日志、订单记录)通过清洗、计算、建模等手段, ...

【CDA干货】Excel 数据透视表折叠功能:空白列添加技巧与层级优化指南

【CDA干货】Excel 数据透视表折叠功能:空白列添加技巧与层级优化指南
2025-09-28
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或折叠为汇总视图,实现 “一表多用” 的动态分析效果。但当透视表包含多级行 / 列字段 ...

【CDA干货】Pandas quoting 详解:掌控文本文件读写中的引号规则,避免数据解析陷阱

【CDA干货】Pandas quoting 详解:掌控文本文件读写中的引号规则,避免数据解析陷阱
2025-09-28
在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京,朝阳”)、嵌套引号(如 “他说:"明天加班"”)时,若未正确配置引号处理规则,Pan ...

CDA 数据分析师:以 SQL 为刃,劈开数据查询与分析的 “效率壁垒”

CDA 数据分析师:以 SQL 为刃,劈开数据查询与分析的 “效率壁垒”
2025-09-28
在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论是从千万级订单表中提取目标数据,还是从多表关联中整合用户消费信息,抑或是通过聚合 ...

CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线”

CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线”
2025-09-26
CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified Data Analyst)数据分析师面临的第一个核心问题。无论是电商平台的用户订单、金融机构 ...

【CDA干货】MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略

【CDA干货】MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略
2025-09-24
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— 部分服务器初始内存占用仅 2GB,运行数月后却飙升至 8GB 以上,且无明显大查询或高并发 ...

【CDA干货】CDA 业务数据分析:6 步闭环,让数据驱动业务落地

【CDA干货】CDA 业务数据分析:6 步闭环,让数据驱动业务落地
2025-09-23
CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并非单纯 “分析数据”,而是通过标准化的业务数据分析流程,将模糊的业务问题转化为明 ...

【CDA干货】训练与验证损失骤升:机器学习训练中的异常诊断与解决方案

【CDA干货】训练与验证损失骤升:机器学习训练中的异常诊断与解决方案
2025-09-19
训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指标 —— 理想情况下,训练损失与验证损失会随迭代轮次(Epoch)稳步下降,最终趋于平 ...

【CDA干货】解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同

【CDA干货】解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同
2025-09-19
解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “高效流转” 与 “有序管理”。然而,数据生态中的工具种类繁多,功能交叉易造成混淆 — ...

【CDA干货】SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化

【CDA干货】SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化
2025-09-18
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论是报表展示(如 “2024 年 09 月”“09/18/2024”)、数据查询(如筛选 “2024 年 Q3 ...

【CDA干货】MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区

【CDA干货】MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区
2025-09-18
MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。当单表数据量达到千万级甚至亿级时,查询耗时、写入阻塞、索引维护困难等问题会逐渐凸 ...

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者

CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者
2025-09-19
CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字化运营的 “核心载体”,其价值实现依赖 “获取(源头)- 加工(提纯)- 使用(落地) ...

【CDA干货】Python 提取 TIF 中地名的完整指南

【CDA干货】Python 提取 TIF 中地名的完整指南
2025-09-17
Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— 这直接决定了后续的技术方案。两种核心形式的差异如下: 地名存在形式 适用 TIF 类 ...

CDA 数据分析师:解锁表结构数据特征价值的专业核心

CDA 数据分析师:解锁表结构数据特征价值的专业核心
2025-09-17
CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、CSV 文件)是企业业务数据的 “基石形态”—— 从零售门店的 “销售明细表” 到金融机 ...

OK
客服在线
立即咨询