cda

数字化人才认证

首页 > 行业图谱 >

1234 1/4

使用Excel做数据分析之相关系数与 协方差

使用Excel做数据分析之相关系数与协方差
2017-08-02
使用Excel做数据分析之相关系数与协方差 化学合成实验中经常需要考察压力随温度的变化情况。某次实验在两个不同的反应器中进行同一条件下实验得到两组温度与压力相关数据,试分析它们与温度的关联关系,并对在 ...

SPSS分析技术: 协方差 分析;剔除工作经验的影响以后,学历对工资的影响依然显著吗

SPSS分析技术:协方差分析;剔除工作经验的影响以后,学历对工资的影响依然显著吗
2017-01-23
SPSS分析技术:协方差分析;剔除工作经验的影响以后,学历对工资的影响依然显著吗 协方差分析是方差分析方法里非常重要的一个技术,特别适用于影响因素多,因素变量类型也多的情况。方差分析主要用于分析分类变 ...

标准化矩阵  协方差 矩阵 相关系数矩阵

标准化矩阵 协方差矩阵 相关系数矩阵
2016-12-13
标准化矩阵 协方差矩阵 相关系数矩阵 在概率论和统计学中,协方差用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。 期望值分别为E(X) = μ 与 E ...

【CDA干货】成分得分系数矩阵与载荷矩阵:不是同一概念!从定义到实战的清晰区分

【CDA干货】成分得分系数矩阵与载荷矩阵:不是同一概念!从定义到实战的清晰区分
2025-11-12
在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— 有人误将载荷矩阵当作计算样本得分的依据,也有人将两者视为 “不同名称的同一矩阵” ...

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具
2025-10-30
对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强度与方向,为决策提供数据支撑” 的核心工具。比如业务想知道 “用户消费频次是否影响 ...

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用
2025-10-23
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、TensorFlow)及数据处理工具,成为实现融合系统的理想选择。本文将以 “无人机姿态估计 ...

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术

【CDA干货】神经网络与卡尔曼滤波的融合:突破传统局限的智能状态估计技术
2025-10-23
在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真实状态(如无人机的位置与速度、化工反应釜的温度与压力、汽车的行驶轨迹)。卡尔曼滤 ...

【CDA干货】特征值、特征向量与主成分:数据降维背后的线性代数逻辑

【CDA干货】特征值、特征向量与主成分:数据降维背后的线性代数逻辑
2025-09-03
特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的核心手段 —— 当我们面对包含数十甚至数百个特征的数据集时,如何剔除冗余信息、保留 ...
判别分析的数学基础与公式
2024-12-06
在数据分析领域,判别分析是一项重要的多变量统计分析方法。它能够在已知分类情况下,根据研究对象的特征值判断其类型归属。本文将探讨判别分析的数学基础、常用方法及应用,并解释其重要性和实际意义。 判别分析的 ...
数据分析相关的数学知识
2024-12-02
在今天的数字化时代,数据扮演着至关重要的角色。对于数据分析师而言,熟练掌握各种数据可视化技术至关重要。通过恰到好处的数据呈现和分析,数据分析师能够为企业决策提供有力支持。让我们一起深入探讨数据分析中必 ...

数据分析的关键指标和分析方法

数据分析的关键指标和分析方法
2024-11-29
在当今信息爆炸的时代,数据成为引领业务决策的关键。数据分析不仅是一门科学,更是艺术,需要掌握各种关键指标和分析方法。本文将带您探索数据分析世界中的重要概念和技术,从描述性统计到因果推断,让您轻松驾驭数 ...

数据分析师教程《Python数据分析极简入门》第1节 Python基础知识

数据分析师教程《Python数据分析极简入门》第1节 Python基础知识
2024-11-18
近年来,随着数据科学的逐步发展,Python语言的使用率也越来越高,不仅可以做数据处理,网页开发,更是数据科学、机器学习、深度学习等从业者的首选语言。 “工欲善其事,必先利其器。” 要做好数据分析,离不开一 ...

数据分析工作太难干了,如何才能脱颖而出

数据分析工作太难干了,如何才能脱颖而出
2024-09-22
数据分析工作确实具有一定的挑战性,但通过采取一些策略和方法,可以显著提升个人在这一领域的竞争力。以下是一些关键步骤和建议: 1. 建立扎实的基础知识 掌握统计学、概率论等基础知识是数据分析的基石。此外,熟 ...
每天一个数据分析题(四百九十)- 主成分分析与因子分析
2024-08-20
在主成分分析中,主成分的选择通常是按照( )的大小排序来进行的。 A.        特征值 B.        特征向量 C.        协方差矩阵 D.    ...

数据相关性分析:揭示数据之间的深层联系

数据相关性分析:揭示数据之间的深层联系
2024-08-19
数据相关性分析是数据分析中的重要环节,作为一个致力于帮助新入行数据分析领域的专业人士,我深知数据相关性分析的价值。它不仅揭示了变量之间的相互影响,更为数据驱动的决策提供了坚实的基础。本文将带领你深 ...

如何使用Excel进行数据分析:全面教程

如何使用Excel进行数据分析:全面教程
2024-08-15
Excel 的核心在于电子表格的创建和数据的输入。通过输入数据,并利用公式与函数(如 SUM、AVERAGE、COUNT 等),你可以对数据进行初步的计算与分析。这些基本功能是所有高级操作的基础。 快捷键的使用能 ...
数据分析中常见的方法和算法有哪些?
2024-01-25
数据分析是一种从大量数据中提取有用信息和洞察的过程。在数据分析中,使用各种方法和算法来处理、转换和解释数据。下面将介绍常见的数据分析方法和算法。 描述统计学:描述统计学是数据分析中最基本且最常用的方 ...

CDA LEVEL II

CDA LEVEL II
2023-10-11
一、总体目标 CDA(Certified Data Analyst),即“CDA数据分析师”,是在数字经济大背景和人工智能时代趋势下,面向全行业的资格认证,旨在提升用户数字技能,助力企业数字化转型,推动行业数字化发展。「CDA ...
研究生统计学基础能力如何?
2023-06-30
作为一门应用广泛的学科,统计学在各个领域中都发挥着重要的作用。在研究生阶段,统计学基础能力的掌握对于完成学术研究和职业发展都至关重要。 首先,研究生需要掌握基本的概率论和数理统计知识。这包括概率分布、 ...
常用的统计分析方法有哪些?
2023-06-17
统计分析是一种数据处理和解释的方法,可以用来描述、推断、预测和控制数据。在各个领域中,统计分析都扮演着重要的角色,帮助人们从复杂的数据集中提取有用的信息。常见的统计分析方法包括描述性统计分析、推断性统 ...
1234 1/4

OK
客服在线
立即咨询