cda

数字化人才认证

首页 > 行业图谱 >

CDA 数据分析师:从数据分析基本概念到实战落地 —— 构建专业能力的核心框架

CDA 数据分析师:从数据分析基本概念到实战落地 —— 构建专业能力的核心框架
2025-11-12
在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” 的表层。事实上,数据分析是一套包含 “定义、目标、流程、方法” 的完整体系,而CDA( ...

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用

【CDA干货】金融统计实战案例:银行个人信贷违约预测的统计分析与风险应用
2025-11-11
金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的收益波动分析,再到监管合规的数据报送,统计方法是金融机构控制风险、提升收益的核心 ...

CDA 数据分析师:企业数据需求与数据分析需求的精准响应者 —— 从需求模糊到价值落地的闭环管理

CDA 数据分析师:企业数据需求与数据分析需求的精准响应者 —— 从需求模糊到价值落地的闭环管理
2025-11-11
在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量”,却说不清需要 “哪些用户数据、哪些销售数据”;技术部门收集了海量数据,却不知 ...

CDA 数据分析师:企业数字化转型的核心引擎 —— 从数据底座到业务价值的落地路径

CDA 数据分析师:企业数字化转型的核心引擎 —— 从数据底座到业务价值的落地路径
2025-11-10
在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集数据” 的浅层阶段,面临 “数据碎片化难整合、业务与数据脱节、转型效果难量化” 的核 ...

【CDA干货】用模型挖掘数据中的隐性特征:方法、案例与落地指南

【CDA干货】用模型挖掘数据中的隐性特征:方法、案例与落地指南
2025-11-07
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “隐性特征”—— 它们隐藏在数据关联、行为模式或语义背后,比如 “用户潜在消费偏好” ...

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例

【CDA干货】数据挖掘核心步骤与实战:以零售企业客户流失预测为例
2025-11-04
在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升收入、优化体验” 的隐性规律。但数据挖掘并非 “拿到数据就建模” 的无序过程,需遵循 ...

【CDA干货】班级规模与平均成绩:相关系数计算全流程(Excel+Python 分步演示)

【CDA干货】班级规模与平均成绩:相关系数计算全流程(Excel+Python 分步演示)
2025-10-30
为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数据准备→系数选择→计算实操→结果解读” 的全流程(含 Excel/Python 工具演示),同时 ...

【CDA干货】Excel 辅助 K-Means 聚类实操手册

【CDA干货】Excel 辅助 K-Means 聚类实操手册
2025-10-29
这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透视图本身无法直接执行聚类分析,它是 “数据汇总与可视化工具”,而聚类分析是需要算法 ...

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用
2025-10-23
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、TensorFlow)及数据处理工具,成为实现融合系统的理想选择。本文将以 “无人机姿态估计 ...

CDA 数据分析师:数据整合实战指南 —— 打破数据孤岛,构建业务全景视图

CDA 数据分析师:数据整合实战指南 —— 打破数据孤岛,构建业务全景视图
2025-10-22
在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散在交易平台、支付系统、物流后台,这些碎片化数据无法直接支撑 “用户生命周期价值分析 ...

【CDA干货】用户行为序列驱动的大模型推理:机制、场景与落地实践

【CDA干货】用户行为序列驱动的大模型推理:机制、场景与落地实践
2025-10-20
在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短视频→停留 3 秒划走→搜索同款→收藏作者”,再到金融 APP 的 “登录→查询余额→浏览 ...

CDA 数据分析师:数据采集方法实战指南 —— 筑牢数据分析的 “源头活水”

CDA 数据分析师:数据采集方法实战指南 —— 筑牢数据分析的 “源头活水”
2025-10-20
在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不合规,后续的清洗、建模、分析都将沦为 “无米之炊”。CDA(Certified Data Analyst) ...

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”

CDA 数据分析师:以量化策略分析框架为刃,破解企业决策的 “数据密码”
2025-10-17
在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍板” 做促销可能导致成本失控,零售靠 “店长经验” 备货可能造成库存积压。而量化策 ...

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力

数据分析师必备技能体系:从工具到思维,构建数据驱动的核心竞争力
2025-10-14
在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分析结果转化为业务决策。但成为一名合格的数据分析师,绝非 “会用 Excel 做表”“会写 ...

企业名称:乐在指尖   招聘岗位: 数据分析 25-30K    (数据分析岗位招聘信息)

企业名称:乐在指尖 招聘岗位: 数据分析 25-30K (数据分析岗位招聘信息)
2025-10-14
岗位职责 • 利用 SQL、Python 等工具进行数据清洗、建模及可视化(如 Power BI、Tableau),提升分析效率与准确性。 • 对接业务部门需求,梳理业务流程与财务规则,推动业财数据系统化建 设。 任职要求 1. 核心能 ...

企业名称:慧博云通   招聘岗位: 数据运营分析师10~16K   (数据分析岗位招聘信息)

企业名称:慧博云通 招聘岗位: 数据运营分析师10~16K (数据分析岗位招聘信息)
2025-10-13
游戏行业,可居家办公,5险1金,周末双休 岗位描述: 1、负责海外游戏项目的数据埋点设计、深度事件配置,保障事件链路在广告归因(MMP)中的完整性与准确性;2、与产品、广告投放团队协作,制定用户行为分析模型,对用 ...

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”

CDA 数据分析师:以数据仓库体系为基,以 ETL 为刃,筑牢数据驱动的 “数据底座”
2025-10-13
在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易系统、支付平台、物流系统里 —— 这些碎片化的数据无法直接支撑深度分析(如用户生命 ...

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术

【CDA干货】序列模式挖掘:解码用户行为逻辑,驱动业务增长的核心技术
2025-10-11
在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银行 APP 的 “登录→查询余额→转账”—— 都构成了带有时间顺序的 “行为序列”。这些 ...

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”

CDA 数据分析师:精通数据分类,让数据从 “混乱仓库” 变 “有序宝库”
2025-10-11
在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified Data Analyst)分析师每次取数都需 “翻箱倒柜”,不仅浪费 60% 的时间在找数据上,还 ...

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧

【CDA干货】SQL Server CONVERT 函数完全指南:语法、场景与实战技巧
2025-10-10
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转为字符串用于报表展示,亦或是调整字符编码适配不同系统,都离不开专门的转换工具。CON ...

OK
客服在线
立即咨询