cda

数字化人才认证

首页 > 行业图谱 >

【CDA干货】mtcars 数据集的实战

【CDA干货】mtcars 数据集的实战
2025-11-11
这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是:以 mtcars 数据集的 “每加仑里程(mpg)” 为因变量,“气缸数(cyl)、马力(hp) ...

【CDA干货】机器学习分类模型:从原理到实战的完整指南

【CDA干货】机器学习分类模型:从原理到实战的完整指南
2025-11-06
在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 / 恶性)”,从 “客户流失预测(流失 / 留存)” 到 “图像分类(猫 / 狗 / 汽车)” ...

CDA 数据分析师:决策树分析实战指南 —— 可解释性建模与业务规则提取核心工具

CDA 数据分析师:决策树分析实战指南 —— 可解释性建模与业务规则提取核心工具
2025-11-06
在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户是否流失并明确流失原因”“判断客户是否办理贷款并提炼审批规则”。这类问题需要模型 ...

CDA 数据分析师:聚类分析实战指南 —— 无监督分组与精准业务运营的核心工具

CDA 数据分析师:聚类分析实战指南 —— 无监督分组与精准业务运营的核心工具
2025-11-04
在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值、潜力、一般用户”“将商品按销售表现归类为爆款、平销、滞销品”。这类问题缺乏明确 ...

CDA 数据分析师:因子分析实战指南 —— 高维数据的潜在维度挖掘与业务价值提炼

CDA 数据分析师:因子分析实战指南 —— 高维数据的潜在维度挖掘与业务价值提炼
2025-11-03
在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次数、评论数、复购频次、消费金额” 等 10 + 特征,表面上分散独立,实则可能由 “消费 ...

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具

CDA 数据分析师:逻辑回归实战指南 —— 二分类预测与业务决策的核心工具
2025-10-31
在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户是否会购买产品”“识别交易是否为欺诈”。这类问题无法用预测数值的线性回归解决,而 ...

【CDA干货】班级规模与平均成绩:相关系数计算全流程(Excel+Python 分步演示)

【CDA干货】班级规模与平均成绩:相关系数计算全流程(Excel+Python 分步演示)
2025-10-30
为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数据准备→系数选择→计算实操→结果解读” 的全流程(含 Excel/Python 工具演示),同时 ...

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具

CDA 数据分析师:相关系数实战指南 —— 破解变量关联的核心工具
2025-10-30
对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强度与方向,为决策提供数据支撑” 的核心工具。比如业务想知道 “用户消费频次是否影响 ...

CDA 数据分析师:方差分析(ANOVA)与 F 检验实战指南 —— 验证多组数据差异的科学方法

CDA 数据分析师:方差分析(ANOVA)与 F 检验实战指南 —— 验证多组数据差异的科学方法
2025-10-29
在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显著差异”“4 种促销方案的转化效果是否不同”。这类问题无法用两组对比的 t 检验解决 ...

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南

【CDA干货】左尾数据的正态化处理:从识别到落地的完整指南
2025-10-28
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的有效性、模型的预测精度才能得到保障。但实际业务中,大量数据呈现 “左偏分布”(左 ...

CDA 数据分析师:列联表分析与卡方检验实战指南 —— 破解分类变量的关联密码

CDA 数据分析师:列联表分析与卡方检验实战指南 —— 破解分类变量的关联密码
2025-10-28
在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式偏好”“会员等级是否与复购意愿相关”。这类问题的核心解决方案,正是 “列联表分析 ...

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法

CDA 数据分析师:假设检验实战指南 —— 用数据验证业务假设的科学方法
2025-10-27
对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转化为可验证的统计假设,通过数据排除随机波动,得出可靠结论” 的核心技能。例如,当业 ...

CDA 数据分析师:可视化驱动的数据探索与统计分析实战指南

CDA 数据分析师:可视化驱动的数据探索与统计分析实战指南
2025-10-24
在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分析师的核心能力,正是通过 “统计分析拆解数据逻辑,可视化直观呈现结论”,让隐藏在 ...

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用

【CDA干货】Python 实践:神经网络与卡尔曼滤波融合系统的构建与应用
2025-10-23
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、TensorFlow)及数据处理工具,成为实现融合系统的理想选择。本文将以 “无人机姿态估计 ...

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”

CDA 数据分析师:数据清洗实战指南 —— 筑牢数据分析的 “质量防线”
2025-10-23
在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技巧(分析模型),也无法烹制出符合要求的佳肴(可靠结论)。据行业调研显示,CDA(Cert ...

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南

【CDA干货】机器学习参数重要性分析:从参数类型到落地实践,优化模型性能的核心指南
2025-10-16
在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这些参数的微小调整都可能显著影响模型的预测精度、泛化能力甚至训练效率。但很多从业者 ...

【CDA干货】鸢尾花识别案例:一文读懂特征值与目标值的核心定义与应用

【CDA干货】鸢尾花识别案例:一文读懂特征值与目标值的核心定义与应用
2025-10-15
在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适中,包含了植物学中可量化的形态特征,以及明确的品种分类目标,几乎所有初学者的第一 ...

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南

【CDA干货】机器学习特征重要性分析:原理、实战与业务落地指南
2025-10-11
在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模型效率,更能揭示 “哪些因素真正影响目标结果”(如用户流失的核心原因、房价波动的关 ...

【CDA干货】正态 t 检验与符号秩检验的选择指南

【CDA干货】正态 t 检验与符号秩检验的选择指南
2025-10-09
本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确:何时必须用 t 检验,何时只能用符号秩检验,以及如何通过数据特征快速决策。 一、先 ...

CDA 数据分析师:用效应分解法,剖开时间序列的 “增长密码”

CDA 数据分析师:用效应分解法,剖开时间序列的 “增长密码”
2025-10-09
在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还是 “双 11 促销拉动”,或是 “新用户结构优化带来的增量”?若仅看时间序列的表面变 ...

OK
客服在线
立即咨询