cda

数字化人才认证

首页 > 行业图谱 >

1234 2/4
数据预处理中最常见的错误有哪些?
2023-10-11
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来 ...
统计学在数据分析中的作用是什么?
2023-10-08
统计学在数据分析中起着关键的作用。它是一门研究如何收集、整理、解释和推断数据的学科,可用于发现数据背后的模式、趋势和关联,从而取得有意义的结论。下面将在800字的篇幅内详细介绍统计学在数据分析中的重要性 ...
数据预处理中最常见的错误有哪些?
2023-10-08
在数据预处理过程中,常见的错误有许多。下面是一些常见的错误和建议的解决方法。 缺失值处理错误:缺失值是数据集中经常遇到的问题。常见的错误包括简单地删除带有缺失值的行或列,或者用一个默认值来填充缺失值 ...
如何为机器学习模型准备好的数据?
2023-08-30
在当今数据驱动的时代,机器学习已经成为了许多领域中的重要工具。然而,一个成功的机器学习模型离不开高质量的数据。本文将介绍为机器学习模型准备数据的关键步骤,帮助您提高模型的性能和准确度。 一、数据收集 ...
如何进行假设检验和置信区间估计?
2023-08-21
假设检验和置信区间估计是统计学中两个重要的工具,用于对总体参数进行推断。它们在研究设计、数据分析和决策制定等领域具有广泛应用。本文将介绍假设检验和置信区间估计的基本概念、步骤及其重要性,并提供实际案 ...
如何提高数据分析模型的准确性?
2023-07-28
在当今信息时代,大数据和数据分析已经成为企业决策和发展的重要工具。然而,数据分析模型的准确性对于取得可靠的结果至关重要。本文将介绍一些关键方法,帮助提高数据分析模型的准确性。 数据质量管理: 数据质量 ...
常见的数据清洗技术有哪些?
2023-06-17
数据清洗是指将原始数据经过处理、筛选和转换等操作,以便让数据能够适合于分析、挖掘、建模等应用场景的一系列技术。数据清洗在数据科学领域中非常重要,因为数据质量对于后续的分析结果有着至关重要的影响。本文将 ...
如何解决数据不平衡问题?
2023-06-15
数据不平衡是指在某个分类问题中,不同类别的样本数量严重失衡。这种情况会对机器学习模型造成一定挑战,因为模型倾向于将大数目类别作为主要预测。解决数据不平衡问题是一个非常重要的机器学习任务,它可以帮助提高 ...
不良数据如何识别并清除?
2023-06-15
在当今数据驱动的世界中,数据质量对于企业和组织的成功至关重要。不良数据可能会导致错误决策、低效运作和损失。因此,对于任何组织来说,识别并清除不良数据是非常重要的步骤。 下面是一些方法来识别并清除不良数 ...
如何处理不平衡数据集?
2023-06-15
不平衡数据集是指在分类问题中,某些类别的样本数量远远少于其他类别的样本数量。这种情况可能会导致机器学习模型的训练和评估出现偏差,从而影响其性能和准确性。因此,在处理不平衡数据集时,需要采取一系列的方法 ...
如何对机器学习xgboost中数据集不平衡进行处理?
2023-04-18
机器学习是一种利用算法和模型从数据中自动学习的方法,而不需要明确编程。随着技术的发展,机器学习在解决各种问题方面得到了广泛的应用。但是,在实际应用中,我们会遇到一个常见的问题:不平衡的数据集。 由于某 ...

xgboost模型训练时需要对类型特征进行one-hot编码吗?

xgboost模型训练时需要对类型特征进行one-hot编码吗?
2023-04-03
XGBoost是一种强大的机器学习算法,广泛应用于数据挖掘和预测建模。在XGBoost模型中,包括许多特征工程技术,例如对类型特征进行编码。在本文中,我们将探讨是否需要对类型特征进行独热编码,并介绍如何使用XGBoos ...

神经网络训练结果不稳定可能是什么原因?有什么解决办法?

神经网络训练结果不稳定可能是什么原因?有什么解决办法?
2023-04-03
神经网络是一种强大的机器学习模型,可用于各种任务。然而,在训练神经网络时,我们可能会遇到结果不稳定的情况,这意味着在同样的数据集和超参数下,神经网络的性能可能会有很大的差异。本文将探讨神经网络训练结 ...

如何避免无效的数据分析结果,这六种错误不可忽视

如何避免无效的数据分析结果,这六种错误不可忽视
2021-12-08
导读:在数据清洗过程中,主要处理的是缺失值、异常值和重复值。所谓清洗,是对数据集通过丢弃、填充、替换、去重等操作,达到去除异常、纠正错误、补足缺失的目的。 作者:宋天龙 本文转自:大数据DT( ...

一个企业级数据挖掘实战项目,教育数据挖掘

一个企业级数据挖掘实战项目,教育数据挖掘
2021-07-06
来源:数据STUDIO 作者:云朵君 导读:大家好,我是云朵君!自从分享了一篇能够写在简历里的企业级数据挖掘实战项目,深受读者朋友们青睐,许多读者私信云朵君,希望多一些类似的数据挖掘实际案例。这就来了 ...

实例 | 教你用python写一个电信客户流失预测模型

实例 | 教你用python写一个电信客户流失预测模型
2020-09-15
   CDA数据分析师 出品   作者:真达、Mika 数据:真达   【导读】 今天教大家如何用python写一个电信用户流失预测模型。之前我们用Python写了员工流失预测模型 ...

R语言之数据管理

R语言之数据管理
2017-07-08
R语言之数据管理 数据挖掘最重要的一环就是如何管理你的数据,因为原始数据一般都不能直接用来进行分析,需要对原始数据进行增加衍生变量、数据分箱、数据标准化处理;对因子型变量进行哑变量处理;数据抽样和 ...
R语言中样本平衡的几种方法
2017-06-07
R语言中样本平衡的几种方法 在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性。在不平衡的数据中,任一算法都没法从样本量少的类中 ...

22道机器学习常见面试题目汇总!(附详细答案)

22道机器学习常见面试题目汇总!(附详细答案)
2019-12-03
作者 | 数据分析1480 来源 | lsxxx2011 (1) 无监督和有监督算法的区别? 有监督学习:对具有概念标记(分类)的训练样本进行学习,以尽可能对训练样本集外的数据进行标记(分类)预测。 ...

特异度等不可不知的11个重要机器学习模型评估指标

特异度等不可不知的11个重要机器学习模型评估指标
2020-05-20
【磐创AI导读】:评估一个模型是建立一个有效的机器学习模型的核心部分,本文为大家介绍了一些机器学习模型评估指标,希望对大家有所帮助。 评估一个模型是建立一个有效的机器学习模型的核心部分 ...
1234 2/4

OK
客服在线
立即咨询