
CDA就业学院&12周脱产就业班
就业高薪岗位 就学数据分析
CDA就业学院简介
缘起2012
『这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程—哈佛大学社会学教授加里•金。
2012年2月,随着《纽约时报》"大数据时代"的提出,"大数据"、"云计算"和"物联网"俨然已成为最炙手可热的科技与商业变革热点。 截止2012年,数据分析已经从TB(1024GB=1TB)级别跃升到PB(1024TB=1PB)、EB(1024PB=1EB)乃至ZB(1024EB=1ZB)级别。
2012年12月, "CDA注册数据分析师协会"(简称CDA协会)应运而生,该协会由美国数据分析行业研究专家教授注册于美国特拉华州,主要为建设国际性规范化数据分析师职业标准,开展数据分析师专家座谈会,汇聚国际先进数据分析技术,推进数据分析师的行业发展及认证工作。
酝酿2014
2014年,仅在中国就有3000多家公司需求上万个具备专业数据分析能力要求的岗位,包括互联网、金融、医疗、电信等行业以及云服务、O2O和物联网等新兴行业,更有着眼未来的人工智能领域。
2014年底,"人大经济论坛"作为全国最大的经管类社区汇聚600万注册会员,"十年磨一剑终"成为CDA协会中国首家注册数据分析师认证培训中心,已陆续培养1500名数据分析师,服务800名CDA俱乐部会员,以及组织报名6月和12月份CDA认证考试。
2014年8月,据中国之声《全国新闻联播》报道,教育部已酝酿启动高校转型改革,我国1200所国家普通高等院校,将有600多所转向职业教育,培养技能型人才。
引爆2015
2015年1月,Linkedin对全球超过3.3亿用户的工作经历和技能进行分析,公布2014年最受雇主喜欢、最炙手可热的25项技能,统计分析和数据挖掘位列榜首。
2015年2月,人大经济论坛成立"CDA数据分析师职业培训中心"peixun.net并创建"CDA就业学院",旨在为响应国家高校职业教育人才培养号召,为全国3000多家企业输送数据分析专业人才,为国家大数据战略规划布局和科技商业领域的发展贡献力量。
2015年,CDA就业学院秉承"开启职业人生,成为自己人生舵手"的理念,计划与全国300多家企业对接,在全国300所高校陆续培养1000名数据分析专业人才。
2015,北京,大数据时代,开启你的精彩职业人生!
就业课程大纲
第一阶段(两周时间)企业内部量化管理基础+EXCEL统计操作基础
一、 excel统计操作基础
1 描述性统计分析
2 假设检验
3 方差分析
4 相关分析
二、 数据处理和展示
1 调查问卷整理
2 数据处理
3 样本结构分析
4 分析报告的图表展示
第二阶段(两周时间)市场研究技术+SPSS和SAS EG 统计操作基础
一、 SPSS统计操作基础
1 描述性统计分析
2 假设检验
3 方差分析
4 相关分析
5 回归
二、 SAS EG 统计操作基础
1 数据处理
2 统计分析
3 课上案例
第三阶段(两周时间)MYSQL数据库
一、 MySQL数据库介绍
二、 MySQL下载和安装
三、 MySQL基本操作
第四阶段(两周时间)SPSS MODLER数据挖掘基础+R数据挖掘
一、 SPSS Modler
1 界面介绍及简单操作
2 案例应用
二、 R数据挖掘
1 软件介绍
2 数据获取和整理
3 数据挖掘实战
第五阶段(两周时间)SAS编程标准流程及案例
一、 SAS编程标准流程
1 逻辑库的建立
2 数据获取和整理
3 编程讲解(顺序语句、条件语句、循环语句)
二、 编程案例
第六阶段(两周时间)前沿数据分析方法:社会网络分析、文本分析、网站分析
一、 社会网络分析
二、 文本分析
三、 网站分析
第七阶段(两周时间)综合案例及毕业设计
一、 案例1大城市普通员工人口结构分析
1.项目背景
2.问卷设计
3.调查小组人员的培训
4.问卷的发放及回收
5.数据的录入
6.数据分析
二、案例2上市公司财务指标综合分析
1.聚类分析
2.因子分析
3.对应分析
4.回归分析
5.Logistic回归分析
就业课程安排
课程名称:CDA数据分析师就业班
课程时间:5月25日-8月25日 (12周)
授课时间:每周周一至周五,每天六课时。
上午8:30am-11:30am、下午1:30pm-4:30pm
地 点:北京
价格(元):19000元/人
就业优惠信息
1. 按实参加完全程培训获得学分前五名学员返还10%学费
2. 参加过论坛其他现场班老学员9折优惠
3. 小伙伴三人及以上同时报名9折优惠,五人及以上8折优惠
4. 原价报名者将捐出100元作为助学基金,满3000捐赠贫困学生
以上优惠不能累加
就业报名咨询
18611983334(樊老师) 17888838147(刘老师)
QQ:2881989705 QQ:349254670
Email:fanyuliang@pinggu.org Email:liulianxi@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12