京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Stata实用计量方法_18小时在线学习
我们以介绍当代实用计量方法为主,Stata 操作为辅,而以发表 (C)SSCI 论文为目标。让您可以复制成功发表的经验。
来参加讲习的目的是要撰写论文(硕、博士或老师要发表学术论文,以国内较好期刊或国外之SSCI为目标),当中一个重要环节就是实证 (计量) 方法,这是讲习之重点,而Stata是执行实证方法最方便的软件,所以课程以
以多年发表 SSCI学术文章之实战功力与经验传承,特别讲求实务应用,摒除课本没有实用之内容,精简介绍学术论文 (期刊) 所需要之计量方法与概念,让学员更容易了解相关概念、掌握重点并能正确应用于个人专业与领域。除此之外,藉由丰富的发表经验,也会穿插如何选择适当题目,让学员开始迈向 SSCI 之路。
培训时长:18小时
培训方式:在线学习,提供全部资料和黄老师答疑
培训费用:3600元 /3200元(学生价, 仅限全日制在读本科生和硕士)
授课安排:上午9:00-12:00; 下午1:30-4:30; 答疑4:30-5:00
在线报名:http://www.peixun.net/main.php?mod=buy&cid=1377
课程教材:
PPT,Stata 程序与相关资料。
课程简介:
1. 前两讲内容(论 t 值与面板模型) 是一个硕、博班学生,甚至年轻老师从事应用计量之最基本、也是最重要的基础。我以多年研究经验,帮你筛选掉没有实用的部分,将你应该知道教给你,让你能够真正自己操作、应用而不会受到别人 (例如审稿人) 之挑战。
2. 论文知道无他,求其 t 值而已矣!但你的 t 值对吗?此外,经济、财务与其他非常多领域有超过一大半是使用面板资料,所以了解其之估计方法 (你还在纠结于固定或随机效果吗?双向固定效果模型若不显著应该如何) 与如何操作和注意事项,让你有明确方向与做法!
3. 后面四讲内容 (倍差法 DID,倾向得分匹配分析 PSM,合成控制法 SCM与断点回归设计 RDD)都是分析政策效果 (不仅局限于政府,也包括其他公司与个人之许多决策) 之因果效应 (causal effects),不管学术或是实务,这几个方法都是必备之计量分析技术。
4. 首先,DID与PSM 在实务应用上是非常相关的,当你想分析某一政策 (也包括法律、制度等) 改变或执行之效果,到底适合用哪一种方式 (正常是两者之一)?DID/PSM 之使用 (与合用) 可说是最广泛的,他们都适用于有"多个”受到政策影响之治疗组,但若只有”一个”受到影响,这时候我门可考虑使用近15年政策评估最大之进展 --- SCM方法来估计政策之因果效应。除了一般的”孤伶伶”情况,我也将介绍”多个”受影响之 SCM 應用與操作。至于RDD之应用,多因为政策执行适用符合某一门槛值之上 (或之下) 所造成,是大家公认最clean的认定政策效果之方法,你也应该要知道!
讲师介绍:
黄河泉,美国范德堡大学 (Vanderbilt University) 经济学博士,目前为淡江大学财务金融学系专任教授。主要教授课程包括计量经济学与高等应用计量等课程。主要研究方向为应用计量经济,应用方面主要为宏观财务经济,这几年逐渐转往财务金融 (公司治理与公司理财) 方面之应用,以中国为主要分析对象。已经于 Journal of Development Economics, Journal of International Moneyand Finance (forthcoming), Journal of Empirical Finance (2篇), Economics Letters, Journal of Comparative Economics, Journal ofMacroeconomics, International Review of Economics and Finance, Studies inNonlinear Dynamics and Econometrics, Economic Modelling 等国际知名期刊发表超过 50 篇之学术论文 (其中有超过 40篇收录于 SSCI 期刊)。
课程大纲:
I. 基础计量
a. 论t 值 (OLS/IV)
1. 外生 (OLS)与内生(IV/2SLS) 解释变量之问题 (t 值之分子问题)
2. 稳健标准误:异方差、序列相关与聚类等处理(t 值之分母问题)
3. SSCI 时间:范文多篇
b. 面板模型(PD, panel data model)
1. 介绍固定效果 (FE) 与随机效果 (RE) 模型与估计
2. 模型筛选:要用 FE 或 RE? 同方差与异方差下之检定
3. 实战一二三:这些年期刊文章的真相 (firm,industry, and year fixed effects 与 robust orcluster at firm/industry/year level)
4. SSCI 时间:范文多篇
II. 衡量政策效果之实用计量:
a. 倍差法(DID, difference-in-differences)
1. 政策改变时点相同之状况
2. 政策改变时点不同之状况
3. 亮点:简单检验平行趋势之操作
4. SSCI 时间:范文多篇
b. 倾向得分匹配分析 (PSM, propensity score matching)
1. 配对之概念与依据,不同配对之方法
2. 亮点:可能更好之配对新方法:EB(entropy balancing) 与 CEM (coarsened exact matching) 等
3. 亮点:与DID合用,与分位数回归合用
4. 亮点:正向/负向选择假说之验证(对文章内容有加分作用)。
5. SSCI时间:范文多篇
c. 合成控制法(SCM, synthetic control method)
1. 特别合适衡量单一个体/地区 (治疗组) 受到政策影响之效果
2. 亮点:将其延伸到多个个体/地区(治疗组) 之情况
3. SSCI时间:范文多篇
d. 断点回归设计(RDD, regression discontinuity design)
1. 明确断点回归设计 (Sharp RDD)
2. 模糊断点回归设计 (Fuzzy RDD)
3. SSCI时间:范文多篇
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
同一单位六人以上同时报名8折优惠;
以上优惠与学生价不叠加。
报名流程:
1,点击“http://www.peixun.net/main.php?mod=buy&cid=1377”,在线提交报名信息;
2,订单支付成功后发送发票信息;
3,开课前一周发送电子版资料与上课事宜。
在线咨询:
尹老师
电话:010-53352991
QQ:42884447
WeChat:yinyinan888
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26