
Stata实用计量方法_18小时在线学习
我们以介绍当代实用计量方法为主,Stata 操作为辅,而以发表 (C)SSCI 论文为目标。让您可以复制成功发表的经验。
来参加讲习的目的是要撰写论文(硕、博士或老师要发表学术论文,以国内较好期刊或国外之SSCI为目标),当中一个重要环节就是实证 (计量) 方法,这是讲习之重点,而Stata是执行实证方法最方便的软件,所以课程以
以多年发表 SSCI学术文章之实战功力与经验传承,特别讲求实务应用,摒除课本没有实用之内容,精简介绍学术论文 (期刊) 所需要之计量方法与概念,让学员更容易了解相关概念、掌握重点并能正确应用于个人专业与领域。除此之外,藉由丰富的发表经验,也会穿插如何选择适当题目,让学员开始迈向 SSCI 之路。
培训时长:18小时
培训方式:在线学习,提供全部资料和黄老师答疑
培训费用:3600元 /3200元(学生价, 仅限全日制在读本科生和硕士)
授课安排:上午9:00-12:00; 下午1:30-4:30; 答疑4:30-5:00
在线报名:http://www.peixun.net/main.php?mod=buy&cid=1377
课程教材:
PPT,Stata 程序与相关资料。
课程简介:
1. 前两讲内容(论 t 值与面板模型) 是一个硕、博班学生,甚至年轻老师从事应用计量之最基本、也是最重要的基础。我以多年研究经验,帮你筛选掉没有实用的部分,将你应该知道教给你,让你能够真正自己操作、应用而不会受到别人 (例如审稿人) 之挑战。
2. 论文知道无他,求其 t 值而已矣!但你的 t 值对吗?此外,经济、财务与其他非常多领域有超过一大半是使用面板资料,所以了解其之估计方法 (你还在纠结于固定或随机效果吗?双向固定效果模型若不显著应该如何) 与如何操作和注意事项,让你有明确方向与做法!
3. 后面四讲内容 (倍差法 DID,倾向得分匹配分析 PSM,合成控制法 SCM与断点回归设计 RDD)都是分析政策效果 (不仅局限于政府,也包括其他公司与个人之许多决策) 之因果效应 (causal effects),不管学术或是实务,这几个方法都是必备之计量分析技术。
4. 首先,DID与PSM 在实务应用上是非常相关的,当你想分析某一政策 (也包括法律、制度等) 改变或执行之效果,到底适合用哪一种方式 (正常是两者之一)?DID/PSM 之使用 (与合用) 可说是最广泛的,他们都适用于有"多个”受到政策影响之治疗组,但若只有”一个”受到影响,这时候我门可考虑使用近15年政策评估最大之进展 --- SCM方法来估计政策之因果效应。除了一般的”孤伶伶”情况,我也将介绍”多个”受影响之 SCM 應用與操作。至于RDD之应用,多因为政策执行适用符合某一门槛值之上 (或之下) 所造成,是大家公认最clean的认定政策效果之方法,你也应该要知道!
讲师介绍:
黄河泉,美国范德堡大学 (Vanderbilt University) 经济学博士,目前为淡江大学财务金融学系专任教授。主要教授课程包括计量经济学与高等应用计量等课程。主要研究方向为应用计量经济,应用方面主要为宏观财务经济,这几年逐渐转往财务金融 (公司治理与公司理财) 方面之应用,以中国为主要分析对象。已经于 Journal of Development Economics, Journal of International Moneyand Finance (forthcoming), Journal of Empirical Finance (2篇), Economics Letters, Journal of Comparative Economics, Journal ofMacroeconomics, International Review of Economics and Finance, Studies inNonlinear Dynamics and Econometrics, Economic Modelling 等国际知名期刊发表超过 50 篇之学术论文 (其中有超过 40篇收录于 SSCI 期刊)。
课程大纲:
I. 基础计量
a. 论t 值 (OLS/IV)
1. 外生 (OLS)与内生(IV/2SLS) 解释变量之问题 (t 值之分子问题)
2. 稳健标准误:异方差、序列相关与聚类等处理(t 值之分母问题)
3. SSCI 时间:范文多篇
b. 面板模型(PD, panel data model)
1. 介绍固定效果 (FE) 与随机效果 (RE) 模型与估计
2. 模型筛选:要用 FE 或 RE? 同方差与异方差下之检定
3. 实战一二三:这些年期刊文章的真相 (firm,industry, and year fixed effects 与 robust orcluster at firm/industry/year level)
4. SSCI 时间:范文多篇
II. 衡量政策效果之实用计量:
a. 倍差法(DID, difference-in-differences)
1. 政策改变时点相同之状况
2. 政策改变时点不同之状况
3. 亮点:简单检验平行趋势之操作
4. SSCI 时间:范文多篇
b. 倾向得分匹配分析 (PSM, propensity score matching)
1. 配对之概念与依据,不同配对之方法
2. 亮点:可能更好之配对新方法:EB(entropy balancing) 与 CEM (coarsened exact matching) 等
3. 亮点:与DID合用,与分位数回归合用
4. 亮点:正向/负向选择假说之验证(对文章内容有加分作用)。
5. SSCI时间:范文多篇
c. 合成控制法(SCM, synthetic control method)
1. 特别合适衡量单一个体/地区 (治疗组) 受到政策影响之效果
2. 亮点:将其延伸到多个个体/地区(治疗组) 之情况
3. SSCI时间:范文多篇
d. 断点回归设计(RDD, regression discontinuity design)
1. 明确断点回归设计 (Sharp RDD)
2. 模糊断点回归设计 (Fuzzy RDD)
3. SSCI时间:范文多篇
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
同一单位六人以上同时报名8折优惠;
以上优惠与学生价不叠加。
报名流程:
1,点击“http://www.peixun.net/main.php?mod=buy&cid=1377”,在线提交报名信息;
2,订单支付成功后发送发票信息;
3,开课前一周发送电子版资料与上课事宜。
在线咨询:
尹老师
电话:010-53352991
QQ:42884447
WeChat:yinyinan888
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29