
华尔街传奇人物詹姆斯·西蒙斯(James Simons)运作的大奖章基金(Medallion)在1989-2009的二十年间,平均年收益率为35%,若算上44%的收益提成,则该基金实际的年化收益率可高达60%,比同期标普500指数年均回报率高出20多个百分点。
最为难能可贵的是,纵然是在次贷危机全面爆发的2008年,该基金的投资回报率仍可稳稳保持在80%左右的惊人水准。
西蒙斯通过将数学模型和投资策略相结合,逐步走上神坛,开创了由他扛旗的量化时代。
量化投资,就是利用计算机技术并且采用一定的数学模型去实践投资理念,实现投资策略的过程。
价值投资和趋势投资(技术分析)是引领过去一个世纪的投资方法,随着计算机技术的发展,已有的投资方法和计算机技术相融合,产生了量化投资。
常用的量化投资的工具有R/MATLAB/Python,各有利弊,选择Python的优势在于:
首先,开放,各种平台可以用,开源各种分析工具包,时间系列,机器学习等都方便。文件处理,网络,数据库对接都很容易。
其次,有不同的开源包或者接口支持不同的功用,性能不是问题。
再次,Python已成为人工智能时代流行的语言之一。
更简单,更通用,能做更多的事情,
这也是本次量化投资现场培训选择Python授课的主要原因:
Python量化投资从零基础到实战
时间:2018年4月20-23日 (四天)
安排:上午9:00-12:00;下午1:30-4:30;答疑4:30-5:00
地点:北京市海淀区厂洼街3号丹龙大厦附近
学费:5000元 / 4200元 (仅限全日制在读本科生及硕士生优惠价);食宿自理
我要报名
讲师介绍:
蔡立耑(Terry Tsai),美国伊利诺伊大学金融硕士,华盛顿大学经济学硕士、博士,在国内外如美国、韩国有丰富的授课经验。带领博、硕士生从事投资决策、金融衍生品、风险分析、交易策略等领域的研究。经管之家资深金牌量化投资讲师。
亲身实践各种金融应用,主持研究团队与台湾知名大学与企业合作开展各种金融研究,例如量化投资、风险分析等。在统计套利、金融大数据等领域有丰富的操作经验与授课经验。带领的量化投资研究团队用多种编程语言实现了统计套利以及风险管理自动化程序。
课程特色:
1:现场教学,可现场和老师互动,解决当下的量化投资疑惑;
2:课程内容丰富,囊括了必备的量化投资的理论知识;
3:课程内容新颖,应用前沿的学术理论;
4:教学过程深入浅出,以实例与实作印证所学;
5:学员能掌握Python,能在现实中通过此工具解决量化投资等综合金融问题;
6:可操作性强,将所介绍理论在实战中一一展示,即学即用,在实战中搭建课程的整体脉络。
课程大纲:
一、Python 编程
二、Python数据分析
1. Numpy
2. Pandas
3. Matplotlib
三、MongoDB
四、基本面:大师选股策略
1. 本杰明·格雷厄姆
2. 詹姆斯·奥肖内西
3. 查尔斯·布兰德斯
4. 彼得·林奇
5. 史蒂夫·路佛
五、技术面:择时判断买卖点
1. 捕捉K线形态
(1) 红三兵
(2) 金针探底
(3) 双响炮
(4) 小探兵
(5) 一阳穿三线
2. 趋势分析
(1) W底突破
(2) 关键点买入形态量化策略
(3) 上升三角形突破
(4) 三到五日下跌法策
(5) 上升平台突破
3. 技术指标分析
(1) MACD
(2) KDJ
(3) BOLL
(4) OBV
(5) RSI
(6) MA
六、神经网路与深度学习在量化交易中的应用
1. 神经网络
2. 卷积神经网路
3. 循环神经网路
报名流程:
1:点击“我要报名”,网上填写信息提交;
2:给予反馈,确认报名信息;
3:网上订单缴费;
4:开课前一周发送课程电子版讲义,软件准备及交通住宿指南。
优惠:
现场班老学员9折优惠;
同一单位三人以上同时报名9折优惠;
以上优惠不叠加。
联系方式:
魏老师
Tel:010-68478566
Mail:vip@pinggu.org
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11