京公网安备 11010802034615号
经营许可证编号:京B2-20210330
42步进阶学习——让你成为优秀的数据科学家
导读:本文将给大家介绍让你成为优秀数据科学家的42个步骤。深入掌握数据准备,机器学习,SQL数据科学等。
如果你对各种数据类的科学课题感兴趣,你就来对地方了。
本文将给大家介绍让你成为优秀数据科学家的42个步骤。
本文将这42步骤分为六个部分, 前三个部分主要讲述从数据准备到初步完成机器学习的学习过程,其中包括对理论知识的掌握和Python库的实现。
第四部分主要是从如何理解的角度讲解深入学习的方法。最后两部分则是关于SQL数据科学和NoSQL数据库。
接下来让我们走进这42步进阶学习。
7步掌握数据准备(Python)
数据准备、清洗、预处理、净化、筛选。这些技术适用于在机器学习、数据挖掘和数据社区的一系列数据活动和不同的数据阶段的学习中使用。同时,这篇文章涵盖了一组完全不同于我们常规的数据预处理的方法。
基于需求,技术可能会被运用在一个指定的情景下。你会发现这一系列方法既适用于正规途径,也适用于一般方法。

7步掌握Python的机器学习(1)
这篇文章主要讲述了七大步骤,包括基本 Python 技能,机器学习基础技巧,科学计算Python 软件包概述,使用 Python 学习机器学习,Python 实现机器学习的基本算法,Python 实现进阶机器学习算法,Python 深度学习。
这篇文章的主要目的是帮助你了解关于机器学习的众多方法。可以肯定的是,好的方法确实有很多,但哪个才是最好最适合的?方法使用的先后次序是什么?
7步掌握Python的机器学习(2)
上一篇文章主要是关于机器学习的基础知识讲解,本文将重点关注机器学习任务的部分。如果你已经学习了该系列的上篇,那么应该达到了令人满意的学习速度和熟练技能;如果没有的话,你也许应该回顾一下上篇,具体花费多少时间,取决于你当前的理解水平。由于安全地跳过了一些基础模块——Python 基础、机器学习基础等等——我们可以直接进入到不同的机器学习算法之中。这次我们可以根据功能更好地分类教程。
7步理解深度学习
这部分教程的目的是为深层神经网络新人而准备,如何从机器学习这个庞大而复杂的课题中找到并获取优质知识。这七个步骤分别是:
第一步:介绍深度学习;
第二步:学习技术;
第三步:反向传播和梯度下降;
第四步:实践;
第六步:递归网和语言处理;
第七步:更深入的课题。
7步掌握SQL数据科学
显然,SQL是数据科学的中比较重要的部分。因此,这篇文章旨在帮助读者使他通过免费的在线资源从SQL新手在短时间内成长为熟练的实践者。在互联网上存在大量的资源,但从开始到结束映射出的路径,使用互相补足的工具,并不是像看起来那样的的那么简单。希望这篇文章能以这种方式给予你们帮助。
7步了解NoSQL数据库
NoSQL是无模式、非关系型数据存储方案的代名词。NoSQL是一个总称,它涵盖了一些不同的技术。这些技术,甚至不一定和NoSQL具有强关联性;而同时,近年来结构化查询语言(SQL)已经和关系数据库管理系统进行了融合。
备注:相关文章链接,在对话框中关键词回复“数据科学”,即可获取
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06