
【每周一期-数据蒋堂】报表的数据计算层(附直播预告)
CDA很有幸,邀请到蒋老师来给我们做线上的直播,直播主题《集算器应对临时性计算》,时间是9月5日(周二)晚19:30。如果你有关于集算器方面的疑问,这将是你和大拿近距离接触的绝佳机会。(报名方式见下文)
我们在上一期已经解释了报表应用结构中数据计算层的必要性,以及可以使用报表工具自定义数据源接口来实现计算层。在计算层中要完成一些复杂的计算逻辑,因此要有可编程的能力,而基于自定义接口可以采用报表工具的宿主语言(即用于开发报表工具的程序设计语言)进行开发,在功能方面没有问题,不过,实际应用中却仍有不少缺陷。更好的方式是实现一个显式的数据计算层,在其中提供可解释执行的脚本功能,把数据源计算独立出来。
我们从四个方面来分析后者的优势。
代码编写
报表工具的宿主语言一般是Java、C#等高级语言,这类语言针对结构化数据集的支持很有限,虽然都能做,但却非常繁琐,简单做个求和运算都需要写数行代码的循环来实现。而报表数据源处理则大量涉及批量数据运算,采用高级语言开发时会导致动辄数百行的冗长代码,编写和调试都很困难。
专门为数据计算设计的脚本则能够提供丰富的结构化数据集运算功能,可以很方便地实现批量数据计算。代码更短不仅是工作量更少、调试方便,而且还有利于整体了解和把握算法。如果语言设计得好,大多数报表的数据源准备算法都可以在一屏内实现,整个算法过程一目了然。
应用耦合
报表的呈现式样是由报表工具绘制的模板来控制,报表模板一般以文件形式存放在文件系统中。如果数据准备采用自定义数据源实现,这部分代码将作为应用程序的一部分被一起编译和打包。呈现模板和数据集算法作为同一个报表的两个关键要素必须合理配合才能正常工作,但物理上却会分存于两处,甚至可能是不同人员开发的,这给修改维护报表带来麻烦,需要刻意去保持两处的一致性。
独立计算层的计算脚本和报表模板一样,都是解释执行的,脚本也可以文件形式与和报表模板放在一起,报表维护时很容易保证这两部分一致,这方面不存在应用耦合问题。
热切换
报表的数据集算法如果使用自定义数据源实现,那就会成为应用程序的一部分,发生修改时就需要和整个应用程序一起重新编译打包,并且在大多数情况时需要将应用停机后再重启。而报表是个业务稳定性相对较差的功能,经常会增加和修改,这样就会导致应用程序频繁重启。虽然Java等开发机制也支持热加载,但使用复杂,大多数应用程序员难以掌握。而且一旦加载后的程序就不会被清除,即使不再有用也会一直占据内存,热加载技术并不很合适应用于报表数据源。
类似地,热切换对于使用独立计算层的脚本也不再是问题,有报表修改只要修改呈现模板和相应的计算脚本。因为脚本是解释执行的,应用程序本身并不需要改变,也就没有必要停机重启。被修改的报表在访问时临时计算即可。
开发人员
使用Java等高级语言实现报表数据集准备时,需要在代码中引用数据库连接、基础类库等各种环境信息,还要了解和遵循整个应用程序的代码规范以保持协调,这常常是项目组中的专业程序员才能掌握的技能。而开发报表数据集只要了解数据结构和运算逻辑,其实用户方有不少技术人员都拥有这个能力,但苦于难以理解开发环境而很难自由实现新的报表。
有独立计算层时,报表开发需要的各种环境信息可以事先在应用程序中配置好,使用脚本编程时也不必关心整个应用的代码规范,报表开发人员只要关心数据结构和运算逻辑,可以用于开发报表的人员更多,以适应报表频繁修改的业务特性。
直播预告
直播时间:9月5日(周二)晚19:30
直播主题:集算器应对临时性计算
直播报名:扫描下方二维码或点击阅读原文报名
直播简介:
在现实业务中有大量的临时性计算需求:数据挖掘算法执行前的清理准备、生成满足一定业务规则的测试数据、实施临时想到的数据分析手段、应对业务部门提出来的取数需求、大数据计算优化方案的实验,...。这类计算需求大都有较强的随意性,缺乏可复用性,不适合由专业程序员事先写到应用程序中,而需要由当事人员临时编写代码解决。目前业界主要采用SQL(面对单数据库)和python等脚本(面对多数据库或非数据库)来处理临时性计算,在环境部署、开发简便性等多方面都有不小的局限性。
润乾集算器作为一种专门面向结构化数据计算的程序设计语言,提供了即装即用的开发环境并固化了大量外部数据源接口,精心设计的语法体系和丰富完善的基础类库使得代码编写更为简单,同时还兼顾了性能和容量问题,能够处理大数据量以及编写并行计算代码,非常适合用于解决临时性计算,超强的集成性还能方便地将临时性计算转成永久计算。
本次内容将从分析临时性计算的特性开始,引出解决方案应当具有的能力,讨论现有技术的优缺点,然后介绍集算器的结构和功能特点,并通过代码实例体会集算器在临时性计算方面的应用优势。
蒋步星,清华大学计算机硕士,著有《非线性报表模型原理》等
1989年中国国际奥林匹克数学竞赛团体冠军成员,个人金牌。
2000年创立润乾公司,首次在润乾报表中提出非线性报表模型,完美解决了中国式复杂报表制表难题,目前该模型已经成为报表行业的标准。
2008年开始研发不依赖关系型数据的计算引擎,历经多个版本后,于2014年集算器正式发布。有效地提高了复杂结构化大数据计算的开发速度和运算效率。
2016年荣获中国电子信息产业发展研究院评选的“2016年中国软件和信息服务业 • 十大领军人物”。
2017年将带领润乾软件朝着拥有自主产权的非关系型强计算数据仓库、云数据库等产品迈进。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22